PyTorch中令人恼火的tensor

10 篇文章 0 订阅
5 篇文章 0 订阅

PyTorch中的tensor

requires_grad

当我们创建一个张量(tensor)的时候,如果没有特殊指定的话,那么这个张量是默认不需要求导的
我们可以通过 tensor.requires_grad 来检查一个张量是否需要求导
举一个比较简单的例子,比如我们在训练一个网络的时候,我们从 DataLoader 中读取出来的一个 mini-batch 的数据,这些输入默认是不需要求导的,其次,网络的输出我们没有特意指明需要求导吧,Ground Truth 我们也没有特意设置需要求导吧。这么一想,哇,那我之前的那些 loss 咋还能自动求导呢?其实原因就是上边那条规则,虽然输入的训练数据是默认不求导的,但是,我们的 model 中的所有参数,它默认是求导的,这么一来,其中只要有一个需要求导,那么输出的网络结果必定也会需要求的
『Ground Truth指的是为这个测试收集适当的目标数据的过程,即真值』

import torch
import torch.nn as nn
# tensor: [batch, channel, width, height]
tensor = torch.randn(8, 3, 50, 100)
net=nn.Sequential(nn.Conv2d(3,16,3,1),
                  nn.Conv2d(16,32,3,1))
# 0.weight True
# 0.bias True
# 1.weight True
# 1.bias True

for param in net.named_parameters():
    print(param[0],param[1].requires_grad)
output=net(tensor)
print(output.requires_grad)
# True

不要把网络的输入和Ground Truth的 requires_grad 设置为True,这样设置增加计算量和占用内存,计算出来的结果也没有什么用
我们试试把网络参数的 requires_grad 设置为 False 会怎么样,同样的网络:

tensor = torch.randn(8, 3, 50, 100)
print(tensor.requires_grad)
# False

net = nn.Sequential(nn.Conv2d(3, 16, 3, 1),
                    nn.Conv2d(16, 32, 3, 1))
for param in net.named_parameters():
    param[1].requires_grad = False
    print(param[0], param[1].requires_grad)
# 0.weight False
# 0.bias False
# 1.weight False
# 1.bias False

output = net(input)
print(output.requires_grad)
# False

这样有什么用处?用处大了。我们可以通过这种方法,在训练的过程中冻结部分网络,让这些层的参数不再更新,这在迁移学习中很有用处

torch.no_grad()

当我们在做 evaluating 的时候(不需要计算导数),我们可以将推断(inference)的代码包裹在 with torch.no_grad(): 之中,以达到暂时不追踪网络参数中的导数的目的,总之是为了减少可能存在的计算和内存消耗

x = torch.randn(3, requires_grad = True)
print(x.requires_grad)
# True

print((x ** 2).requires_grad)
# True

with torch.no_grad():
    print((x ** 2).requires_grad)
    # False
print((x ** 2).requires_grad)
# True

反向传播及网络的更新

我们以一个非常简单的自定义网络来讲解这个问题,这个网络包含2个卷积层,1个全连接层,输出的结果是20维的,类似分类问题中我们一共有20个类别

import torch
import torch.nn as nn

class Simple(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 16, 3, 1, padding=1, bias=False)
        self.conv2 = nn.Conv2d(16, 32, 3, 1, padding=1, bias=False)
        self.linear = nn.Linear(32*10*10, 20, bias=False)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.linear(x.view(x.size(0), -1))
        return x

# 创建一个很简单的网络:两个卷积层,一个全连接层
model = Simple()

# 为了方便观察数据变化,把所有网络参数都初始化为 0.1
for m in model.parameters():
    m.data.fill_(0.1)
    
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1.0)

model.train()

# 模拟输入8个 sample,每个的大小是 10x10,
# 值都初始化为1,让每次输出结果都固定,方便观察
images = torch.ones(8, 3, 10, 10)
targets = torch.ones(8, dtype=torch.long)

output = model(images)
print(output.shape)
# torch.Size([8, 20])

loss = criterion(output, targets)

print(model.conv1.weight.grad)
# None

loss.backward()

print(model.conv1.weight.grad[0][0][0])
# tensor([-0.0782, -0.0842, -0.0782])
# 通过一次反向传播,计算出网络参数的导数,
# 因为篇幅原因,我们只观察一小部分结果

print(model.conv1.weight[0][0][0])
# tensor([0.1000, 0.1000, 0.1000], grad_fn=<SelectBackward>)
# 我们知道网络参数的值一开始都初始化为 0.1 的

optimizer.step()
print(model.conv1.weight[0][0][0])
# tensor([0.1782, 0.1842, 0.1782], grad_fn=<SelectBackward>)
# 回想刚才我们设置 learning rate 为 1,这样,
# 更新后的结果,正好是 (原始权重 - 求导结果) !

optimizer.zero_grad()
print(model.conv1.weight.grad[0][0][0])
# tensor([0., 0., 0.])
# 每次更新完权重之后,我们记得要把导数清零啊,
# 不然下次会得到一个和上次计算一起累加的结果。
# 当然,zero_grad() 的位置,可以放到前边去,
# 只要保证在计算导数前,参数的导数是清零的就好

tensor.detach()

接下来我们来探讨两个 0.4.0 版本更新产生的遗留问题。第一个,tensor.data 和 tensor.detach()。
在 0.4.0 版本以前,.data 是用来取 Variable 中的 tensor 的,但是之后 Variable 被取消,.data 却留了下来。现在我们调用 tensor.data,可以得到 tensor的数据 + requires_grad=False 的版本,而且二者共享储存空间,也就是如果修改其中一个,另一个也会变。因为 PyTorch 的自动求导系统不会追踪 tensor.data 的变化,所以使用它的话可能会导致求导结果出错。官方建议使用 tensor.detach() 来替代它,二者作用相似,但是 detach 会被自动求导系统追踪,使用起来很安全

a = torch.tensor([7., 0, 0], requires_grad=True)
b = a + 2
print(b)
# tensor([9., 2., 2.], grad_fn=<AddBackward0>)

loss = torch.mean(b * b)
b_ = b.detach()
b_.zero_()
print(b)
# tensor([0., 0., 0.], grad_fn=<AddBackward0>)
# 储存空间共享,修改 b_ , b 的值也变了

loss.backward()
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

这个例子中,b 是用来计算 loss 的一个变量,我们在计算完 loss 之后,进行反向传播之前,修改 b 的值。这么做会导致相关的导数的计算结果错误,因为我们在计算导数的过程中还会用到 b 的值,但是它已经变了(和正向传播过程中的值不一样了)。在这种情况下,PyTorch 选择报错来提醒我们。但是,如果我们使用 tensor.data 的时候,结果是这样的:

a = torch.tensor([7., 0, 0], requires_grad=True)
b = a + 2
print(b)
# tensor([9., 2., 2.], grad_fn=<AddBackward0>)

loss = torch.mean(b * b)
b_ = b.data
b_.zero_()
print(b)
# tensor([0., 0., 0.], grad_fn=<AddBackward0>)

loss.backward()
print(a.grad)
# tensor([0., 0., 0.])
# 其实正确的结果应该是:
# tensor([6.0000, 1.3333, 1.3333])

这个导数计算的结果明显是错的,但没有任何提醒,之后再 Debug 会非常痛苦

CPU和GPU

关于 tensor.cuda() 和 tensor.to(device)后者是 0.4.0 版本之后后添加的,当 device 是 GPU 的时候,这两者并没有区别。那为什么要在新版本增加后者这个表达呢,是因为有了它,我们直接在代码最上边加一句话指定 device ,后面的代码直接用to(device) 就可以了:

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
a = torch.rand([3,3]).to(device)

关于使用 GPU 还有一个点,在我们想把 GPU tensor 转换成 Numpy 变量的时候,需要先将 tensor 转换到 CPU 中去,因为 Numpy 是 CPU-only 的。其次,如果 tensor 需要求导的话,还需要加一步 detach,再转成 Numpy

x  = torch.rand([3,3], device='cuda')
x_ = x.cpu().numpy()
y  = torch.rand([3,3], requires_grad=True, device='cuda').
y_ = y.cpu().detach().numpy()
# y_ = y.detach().cpu().numpy() 也可以

tensor.item()

我们在提取 loss 的纯数值的时候,常常会用到 loss.item(),其返回值是一个 Python 数值 (python number)。不像从 tensor 转到 numpy (需要考虑 tensor 是在 cpu,还是 gpu,需不需要求导),无论什么情况,都直接使用 item() 就完事了。如果需要从 gpu 转到 cpu 的话,PyTorch 会自动帮你处理。
但注意 item() 只适用于 tensor 只包含一个元素的时候。因为大多数情况下我们的 loss 就只有一个元素,所以就经常会用到 loss.item()。如果想把含多个元素的 tensor 转换成 Python list 的话,要使用 tensor.tolist()。

x  = torch.randn(1, requires_grad=True, device='cuda')
print(x)
# tensor([-0.4717], device='cuda:0', requires_grad=True)

y = x.item()
print(y, type(y))
# -0.4717346727848053 <class 'float'>

x = torch.randn([2, 2])
y = x.tolist()
print(y)
# [[-1.3069953918457031, -0.2710231840610504], [-1.26217520236969, 0.5559719800949097]]

pytorch中的Autograd

pytorch提供了自动求导机制和对GPU的支持
了解自动求导背后的原理和规则:当使用pytorch中没有的loss function时,需要我们自己写loss function

计算图

设我们有一个复杂的神经网络模型,我们把它想象成一个错综复杂的管道结构,不同的管道之间通过节点连接起来,我们有一个注水口,一个出水口。我们在入口注入数据之后,数据就沿着设定好的管道路线缓缓流动到出水口,这时候我们就完成了一次正向传播。想象一下输入的 tensor 数据在管道中缓缓流动的场景,这就是为什么 TensorFlow 叫 TensorFlow 的原因
计算图中的两个元素:tensor和Function

  • Function:在计算图中某个节点(node)所进行的计算,比如加、减、乘、除、卷积

Function 内部有 forward() 和 backward() 两个方法

a = torch.tensor(2.0, requires_grad=True)
b = a.exp()
print(b)
# tensor(7.3891, grad_fn=<ExpBackward>)

在我们做正向传播的过程中,除了执行 forward() 操作之外,为反向计算图添加 Function 节点。在上边这个例子中,变量 b 在反向传播中所需要进行的操作是 <ExpBackward>

一个具体的例子

假如我们需要计算这么一个模型:

l1 = input x w1
l2 = l1 + w2
l3 = l1 x w3
l4 = l2 x l3
loss = mean(l4)

在这里插入图片描述

在整张计算图中,只有 input 一个变量是 requires_grad=False 的。正向传播过程的具体代码如下:

input = torch.ones([2, 2], requires_grad=False)
w1 = torch.tensor(2.0, requires_grad=True)
w2 = torch.tensor(3.0, requires_grad=True)
w3 = torch.tensor(4.0, requires_grad=True)

l1 = input * w1
l2 = l1 + w2
l3 = l1 * w3
l4 = l2 * l3
loss = l4.mean()

print(w1.data, w1.grad, w1.grad_fn)
# tensor(2.) None None

print(l1.data, l1.grad, l1.grad_fn)
# tensor([[2., 2.],
#         [2., 2.]]) None <MulBackward0 object at 0x000001EBE79E6AC8>

print(loss.data, loss.grad, loss.grad_fn)
# tensor(40.) None <MeanBackward0 object at 0x000001EBE79D8208>

正向传播的结果基本符合我们的预期。我们可以看到,变量 l1 的 grad_fn 储存着乘法操作符 <MulBackward0>,用于在反向传播中指导导数的计算。而 w1 是用户自己定义的,不是通过计算得来的,所以其 grad_fn 为空;同时因为还没有进行反向传播,grad 的值也为空。接下来,我们看一下如果要继续进行反向传播,计算图应该是什么样子:
在这里插入图片描述

反向图也比较简单,从 loss 这个变量开始,通过链式法则,依次计算出各部分的导数
i

nput = [1.0, 1.0, 1.0, 1.0]
w1 = [2.0, 2.0, 2.0, 2.0]
w2 = [3.0, 3.0, 3.0, 3.0]
w3 = [4.0, 4.0, 4.0, 4.0]

l1 = input x w1 = [2.0, 2.0, 2.0, 2.0]
l2 = l1 + w2 = [5.0, 5.0, 5.0, 5.0]
l3 = l1 x w3 = [8.0, 8.0, 8.0, 8.0] 
l4 = l2 x l3 = [40.0, 40.0, 40.0, 40.0] 
loss = mean(l4) = 40.0

loss.backward()

print(w1.grad, w2.grad, w3.grad)
# 梯度之和
# tensor(28.) tensor(8.) tensor(10.)

print(l1.grad, l2.grad, l3.grad, l4.grad, loss.grad)
# None None None None None

叶子张量

对于任意一个张量来说,我们可以用 tensor.is_leaf 来判断它是否是叶子张量(leaf tensor)。在反向传播过程中,只有 is_leaf=True 的时候,需要求导的张量的导数结果才会被最后保留下来
对于 requires_grad=False 的 tensor 来说,我们约定俗成地把它们归为叶子张量。但其实无论如何划分都没有影响,因为张量的 is_leaf 属性只有在需要求导的时候才有意义
我们真正需要注意的是当 requires_grad=True 的时候,如何判断是否是叶子张量:当这个 tensor 是用户创建的时候,它是一个叶子节点,当这个 tensor 是由其他运算操作产生的时候,它就不是一个叶子节点。我们来看个例子:

a = torch.ones([2, 2], requires_grad=True)
print(a.is_leaf)
# True

b = a + 2
print(b.is_leaf)
# False
# 因为 b 不是用户创建的,是通过计算生成的

为什么要搞出这么个叶子张量的概念出来?原因是为了节省内存(或显存)
那些非叶子结点,是通过用户所定义的叶子节点的一系列运算生成的,也就是这些非叶子节点都是中间变量,一般情况下,用户不会去使用这些中间变量的导数,所以为了节省内存,它们在用完之后就被释放了
我们回头看一下之前的反向传播计算图,在图中的叶子节点我用绿色标出了。可以看出来,被叫做叶子,是因为游离在主干之外,没有子节点,都是被用户创建的,不是通过其他节点生成。对于叶子节点来说,它们的 grad_fn 属性都为空;而对于非叶子结点来说,因为它们是通过一些操作生成的,所以它们的 grad_fn 不为空

inplace操作

现在我们以 PyTorch 不同的报错信息作为驱动,来讲一讲 inplace 操作吧。第一个报错信息:

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

inplace 指的是在不更改变量的内存地址的情况下,直接修改变量的值
我们来看两种情况,大家觉得这两种情况哪个是 inplace 操作,哪个不是?或者两个都是 inplace?

# 情景 1
a = a.exp()

# 情景 2
a[0] = 10

答案是:情景1不是 inplace,类似 Python 中的 i=i+1, 而情景2是 inplace 操作,类似 i+=1

# 我们要用到 id() 这个函数,其返回值是对象的内存地址
# 情景 1
a = torch.tensor([3.0, 1.0])
print(id(a)) # 2112716404344

a = a.exp()
print(id(a)) # 2112715008904
# 在这个过程中 a.exp() 生成了一个新的对象,然后再让 a
# 指向它的地址,所以这不是个 inplace 操作

# 情景 2
a = torch.tensor([3.0, 1.0])
print(id(a)) # 2112716403840

a[0] = 10
print(id(a), a) # 2112716403840 tensor([10.,  1.])
# inplace 操作,内存地址没变

PyTorch 是怎么检测 tensor 发生了 inplace 操作呢?答案是通过 tensor._version 来检测的。我们还是来看个例子:

a = torch.tensor([1.0, 3.0], requires_grad=True)
b = a + 2
print(b._version) # 0

loss = (b * b).mean()
b[0] = 1000.0
print(b._version) # 1

loss.backward()
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation 


每次 tensor 在进行 inplace 操作时,变量 _version 就会加1,其初始值为0。在正向传播过程中,求导系统记录的 b 的 version 是0,但是在进行反向传播的过程中,求导系统发现 b 的 version 变成1了,所以就会报错了。但是还有一种特殊情况不会报错,就是反向传播求导的时候如果没用到 b 的值(比如 y=x+1, y 关于 x 的导数是1,和 x 无关),自然就不会去对比 b 前后的 version 了,所以不会报错。
上边我们所说的情况是针对非叶子节点的,对于 requires_grad=True 的叶子节点来说,要求更加严格了,甚至在叶子节点被使用之前修改它的值都不行。我们来看一个报错信息:

RuntimeError: leaf variable has been moved into the graph interior

这个意思通俗一点说就是你的一顿 inplace 操作把一个叶子节点变成了非叶子节点了。我们知道,非叶子节点的导数在默认情况下是不会被保存的,这样就会出问题了。举个小例子:

a = torch.tensor([10., 5., 2., 3.], requires_grad=True)
print(a, a.is_leaf)
# tensor([10.,  5.,  2.,  3.], requires_grad=True) True

a[:] = 0
print(a, a.is_leaf)
# tensor([0., 0., 0., 0.], grad_fn=<CopySlices>) False

loss = (a*a).mean()

loss.backward()
# RuntimeError: leaf variable has been moved into the graph interior

我们看到,在进行对 a 的重新 inplace 赋值之后,表示了 a 是通过 copy operation 生成的,grad_fn 都有了,所以自然而然不是叶子节点了。本来是该有导数值保留的变量,现在成了导数会被自动释放的中间变量了,所以 PyTorch 就给你报错了。还有另外一种情况:

a = torch.tensor([10., 5., 2., 3.], requires_grad=True)
a.add_(10.) # 或者 a += 10.
# RuntimeError: a leaf Variable that requires grad has been used in an in-place operation.

这个更厉害了,不等到你调用 backward,只要你对需要求导的叶子张量使用了这些操作,马上就会报错。那是不是需要求导的叶子节点一旦被初始化赋值之后,就不能修改它们的值了呢?我们如果在某种情况下需要重新对叶子变量赋值该怎么办呢?有办法!

# 方法一
a = torch.tensor([10., 5., 2., 3.], requires_grad=True)
print(a, a.is_leaf, id(a))
# tensor([10.,  5.,  2.,  3.], requires_grad=True) True 2501274822696

a.data.fill_(10.)
# 或者 a.detach().fill_(10.)

print(a, a.is_leaf, id(a))
# tensor([10., 10., 10., 10.], requires_grad=True) True 2501274822696

loss = (a*a).mean()
loss.backward()

print(a.grad)
# tensor([5., 5., 5., 5.])

# 方法二
a = torch.tensor([10., 5., 2., 3.], requires_grad=True)
print(a, a.is_leaf)
# tensor([10.,  5.,  2.,  3.], requires_grad=True) True

with torch.no_grad():
    a[:] = 10.
print(a, a.is_leaf)
# tensor([10., 10., 10., 10.], requires_grad=True) True

loss = (a*a).mean()
loss.backward()

print(a.grad)
# tensor([5., 5., 5., 5.])

我们需要注意的是,要在变量被使用之前修改,不然等计算完之后再修改,还会造成求导上的问题,会报错的
为什么 PyTorch 的求导不支持绝大部分 inplace 操作呢?从上边我们也看出来了,因为真的很 tricky。比如有的时候在一个变量已经参与了正向传播的计算,之后它的值被修改了,在做反向传播的时候如果还需要这个变量的值的话,我们肯定不能用那个后来修改的值吧,但没修改之前的原始值已经被释放掉了,我们怎么办?一种可行的办法就是我们在 Function 做 forward 的时候每次都开辟一片空间储存当时输入变量的值,这样无论之后它们怎么修改,都不会影响了,反正我们有备份在存着。但这样有什么问题?这样会导致内存(或显存)使用量大大增加。因为我们不确定哪个变量可能之后会做 inplace 操作,所以我们每个变量在做完 forward 之后都要储存一个备份,成本太高了。除此之外,inplace operation 还可能造成很多其他求导上的问题
PyTorch 不推荐使用 inplace 操作,当求导过程中发现有 inplace 操作影响求导正确性的时候,会采用报错的方式提醒。但这句话反过来说就是,因为只要有 inplace 操作不当就会报错,所以如果我们在程序中使用了 inplace 操作却没报错,那么说明我们最后求导的结果是正确的

动态图,静态图

可能大家都听说过,PyTorch 使用的是动态图(Dynamic Computational Graphs)的方式,而 TensorFlow 使用的是静态图(Static Computational Graphs)
所谓动态图,就是每次当我们搭建完一个计算图,然后在反向传播结束之后,整个计算图就在内存中被释放了。如果想再次使用的话,必须从头再搭一遍
以 TensorFlow 为代表的静态图,每次都先设计好计算图,需要的时候实例化这个图,然后送入各种输入,重复使用,只有当会话结束的时候创建的图才会被释放。就像我们之前举的那个水管的例子一样,设计好水管布局之后,需要用的时候就开始搭,搭好了就往入口加水,什么时候不需要了,再把管道都给拆了

# 这是一个关于 PyTorch 是动态图的例子:
a = torch.tensor([3.0, 1.0], requires_grad=True)
b = a * a
loss = b.mean()
loss.backward() # 正常
loss.backward() # RuntimeError

# 第二次:从头再来一遍
a = torch.tensor([3.0, 1.0], requires_grad=True)
b = a * a
loss = b.mean()
loss.backward() # 正常

从描述中我们可以看到,理论上来说,静态图在效率上比动态图要高。因为首先,静态图只用构建一次,然后之后重复使用就可以了;其次静态图因为是固定不需要改变的,所以在设计完了计算图之后,可以进一步的优化
除了动态图之外,PyTorch 还有一个特性,叫 eager execution,意思就是当遇到 tensor 计算的时候,马上就回去执行计算,也就是,实际上 PyTorch 根本不会去构建正向计算图,而是遇到操作就执行。真正意义上的正向计算图是把所有的操作都添加完,构建好了之后,再运行神经网络的正向传播(PyTorch:边运行边计算;计算图:先搭建图再进行计算)
正是因为 PyTorch 的两大特性:动态图和 eager execution,所以它用起来才这么顺手,简直就和写 Python 程序一样舒服,debug 也非常方便。除此之外,我们从之前的描述也可以看出,PyTorch 十分注重占用内存(或显存)大小,没有用的空间释放很及时,可以很有效地利用有限的内存。

pytorch中的Variable

tensor是硬币的话,那Variable就是钱包,它记录着里面的钱的多少,和钱的流向
图片: https://uploader.shimo.im/f/PLQNdv7uRiZ6btr5.png!thumbnail?accessToken=eyJhbGciOiJIUzI1NiIsImtpZCI6ImRlZmF1bHQiLCJ0eXAiOiJKV1QifQ.eyJleHAiOjE3MjEwMTE3ODQsImZpbGVHVUlEIjoiTDlrQkJqb2E1UkhWem5rSyIsImlhdCI6MTcyMTAxMTQ4NCwiaXNzIjoidXBsb2FkZXJfYWNjZXNzX3Jlc291cmNlIiwidXNlcklkIjo4NTQwNzQ2NX0.Z_4vNZe5FAWPHXXR5s5lZ3RRuIhYKUXoBGhTjh6Gais

torch0.4以后 torch.tensor()就可以搞定所有

Contiguous vs Non-Contiguous Tensor

Tensor and View

View使用与原始张量相同的数据块,只是“view”其维度的方式不同
视图只不过是解释原始张量维度的另一种方法,而无需在内存中进行物理复制。例如,我们可以有一个 1x12 张量,即 [1,2,3,4,5,6,7,8,9,10,11,12],然后使用 .view(4,3) 来改变形状将张量转换为 4x3 结构。

x = torch.arange(1,13)
print(x)
>> tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])

x = torch.arange(1,13)
y = x.view(4,3)
print(y)
>>
tensor([[ 1,  2,  3],
        [ 4,  5,  6],
        [ 7,  8,  9],
        [10, 11, 12]])

如果更改原始张量 x 中的数据,它也会反映在视图张量 y 中,因为视图张量 y 不是创建原始张量 x 的另一个副本,而是从与原始张量相同的内存地址读取数据X。反之亦然,视图张量中的值的更改将同时更改原始张量中的值,因为视图张量及其原始张量共享同一块内存块

x = torch.arange(1,13)
y = x.view(4,3)
x[0] = 100
print(y)
>> 
tensor([[100,   2,   3],
        [  4,   5,   6],
        [  7,   8,   9],
        [ 10,  11,  12]])
        
x = torch.arange(1,13)
y = x.view(4,3)
y[-1,-1] = 1000
print(x)
>> tensor([   1,    2,    3,    4,    5,    6,    7,    8,    9,   10,   11, 1000])

可以以连续的方式查看不同维度的数据序列
张量数据存储为一维数据序列,view()可以提供给定维度的张量视图
一维张量A中的元素数量为T,经过view()处理之后的张量B,shape为(K,M,N),则需满足数学公式: K × M × N = T K\times M\times N=T K×M×N=T

Strides

在这里插入图片描述

# x is a contiguous data. Recall that view() doesn't change data arrangement in the original 1D tensor, i.e. the sequence from 1 to 12.
x = torch.arange(1,13).view(6,2)
x
>>
tensor([[ 1,  2],
        [ 3,  4],
        [ 5,  6],
        [ 7,  8],
        [ 9, 10],
        [11, 12]])
        
# Check stride
x.stride()
>> (2, 1)

步长 (2, 1) 告诉我们:我们需要跨过 1 个(最后一个维度,即维度 0)数字才能到达沿轴 0 的下一个数字,并且需要跨过 2 个(维度 1)数字才能到达沿轴 1 的下一个数字

y = torch.arange(0,11).view(2,2,3)
y
>>
tensor([[[ 0,  1,  2],
         [ 3,  4,  5]],
        [[ 6,  7,  8],
         [ 9, 10, 11]]])
         
# Check stride
y.stride()
>> (6, 3, 1)

检索一维张量中 (A, B, C) 位置的公式如下: A ∗ 6 + B ∗ 3 + C ∗ 1 A * 6 + B * 3 + C * 1 A6+B3+C1

非连续数据结构:Transpose( )

首先,Transpose(axis1, axis2) 只是“swapping the way axis1 and axis2 strides”。
在这里插入图片描述

# Initiate a contiguous tensor
x = torch.arange(0,12).view(2,2,3)
x
>>
tensor([[[ 0,  1,  2],
         [ 3,  4,  5]],
        [[ 6,  7,  8],
         [ 9, 10, 11]]])
         
x.stride()
>> (6,3,1)

# Now let's transpose axis 0 and 1, and see how the strides swap
y = x.transpose(0,2)
y
>>
tensor([[[ 0,  6],
         [ 3,  9]],
        [[ 1,  7],
         [ 4, 10]],
        [[ 2,  8],
         [ 5, 11]]])
         
y.stride()
>> (1,3,6)

y 是 x.transpose(0,2),它交换 x 张量在轴 0 和轴 2 上的stride,因此 y 的stride是 (1,3,6)。这意味着我们需要跳转 6 个数字才能获取第 0 轴的下一个数字,跳转 3 个数字才能获取第 1 轴的下一个数字,跳转 1 个数字才能获取第 2 轴的下一个数字。(stride公式: A ∗ 1 + B ∗ 3 + C ∗ 6 A * 1+ B * 3+C * 6 A1+B3+C6)
transpose的不同之处在于:现在数据序列不再遵循连续的顺序。它不会从最内层维度逐一填充顺序数据,填满后跳转到下一个维度。现在它在最里面的维度跳跃了6个数字,所以它不是连续的
Transpose( ) 具有不连续的数据结构,但仍然是视图而不是副本
transpose() 仍然返回一个视图,但不是原始张量的副本。因此,它是一个不连续的“视图”。它改变了原始数据的stride方式,对原始张量的任何数据修改都会影响视图,反之亦然

# Change the value in a transpose tensor y
x = torch.arange(0,12).view(2,6)
y = x.transpose(0,1)
y[0,0] = 100
y
>>
tensor([[100,   6],
        [  1,   7],
        [  2,   8],
        [  3,   9],
        [  4,  10],
        [  5,  11]])
# Check the original tensor x
x
>>
tensor([[100,   1,   2,   3,   4,   5],
        [  6,   7,   8,   9,  10,  11]])

在 PyTorch 中检查Contiguous and Non-Contiguous

PyTorch 有一个方法 .is_contigious() 可以告诉你张量是否连续

x = torch.arange(0,12).view(2,6)
x.is_contiguous()
>> True

y = x.transpose(0,1)
y.is_contiguous()
>> False

将不连续张量(或视图)转换为连续张量

PyTorch 有一个方法 .contigious() 可以将不连续的张量或视图转换为连续的。

z = y.contiguous()
z.is_contiguous()
>> True

它复制原始的“non-contiguous”张量,然后按照连续顺序将其保存到新的内存块中。我们可以通过它的stride来观察它

# This is contiguous
x = torch.arange(1,13).view(2,3,2)
x.stride()
>> (6, 2, 1)

# This is non-contiguous
y = x.transpose(0,1)
y.stride()
>> (2, 6, 1)

# This is a converted contiguous tensor with new stride
z = y.contiguous()
z.stride()
>> (4, 2, 1)

print(z.shape)
>> (3, 2, 2)

(4, 2, 1)=>(2*2, 2*1, 1)

我用来区分张量/视图是否连续的一种方法是观察stride中的 (A, B, C) 是否满足 A > B > C。如果不满足,则意味着至少有一个维度正在跳过距离比其上方的维度更长,这使得它不连续
我们还可以观察转换后的连续张量 z 如何以新的顺序存储数据。

# y is a non-contiguous 'view' (remember view uses the original chunk of data in memory, but its strides implies 'non-contiguous', (2,6,1).
y.storage()
>>
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 
# Z is a 'contiguous' tensor (not a view, but a new copy of the original data. Notice the order of the data is different). It strides implies 'contiguous', (4,2,1)
z.storage()
>>
 1
 2
 7
 8
 3
 4
 9
 10
 5
 6
 11
 12

view() 和 reshape() 之间的区别

虽然这两个函数都可以改变张量的维度(基本上只是一维数据中stride的不同方式),但两者之间的主要区别是:

  • view():不复制原始张量,它改变了原始数据的维度(stride)。换句话说,它使用与原始张量相同的数据块,因此它仅适用于连续数据
  • reshape():当数据连续时,尽可能返回视图;当数据不连续时,则将数据复制到连续的数据块中,作为副本,它会占用内存空间,而且新张量的变化不会影响张量中的原始数值

对于连续数据,reshape() 返回一个视图:

# When data is contiguous
x = torch.arange(1,13)
x
>> tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])

# Reshape returns a view with the new dimension
y = x.reshape(4,3)
y
>>
tensor([[ 1,  2,  3],
        [ 4,  5,  6],
        [ 7,  8,  9],
        [10, 11, 12]])
        
# How do we know it's a view? Because the element changed in new tensor y would affect the value in x, and vice versa
y[0,0] = 100
y
>>
tensor([[100,   2,   3],
        [  4,   5,   6],
        [  7,   8,   9],
        [ 10,  11,  12]])
        
print(x)
>>
tensor([100,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12])

接下来,让我们看看 reshape() 如何处理非连续数据:

# After transpose(), the data is non-contiguous
x = torch.arange(1,13).view(6,2).transpose(0,1)
x
>>
tensor([[ 1,  3,  5,  7,  9, 11],
        [ 2,  4,  6,  8, 10, 12]])
        
# Reshape() works fine on a non-contiguous data
y = x.reshape(4,3)
y
>>
tensor([[ 1,  3,  5],
        [ 7,  9, 11],
        [ 2,  4,  6],
        [ 8, 10, 12]])
        
# Change an element in y
y[0,0] = 100
y
>>
tensor([[100,   3,   5],
        [  7,   9,  11],
        [  2,   4,   6],
        [  8,  10,  12]])
        
# Check the original tensor, and nothing was changed
x
>>
tensor([[ 1,  3,  5,  7,  9, 11],
        [ 2,  4,  6,  8, 10, 12]])

最后,让我们看看 view() 是否可以处理非连续数据。No, it can’t!

# After transpose(), the data is non-contiguous
x = torch.arange(1,13).view(6,2).transpose(0,1)
x
>>
tensor([[ 1,  3,  5,  7,  9, 11],
        [ 2,  4,  6,  8, 10, 12]])
        
# Try to use view on the non-contiguous data
y = x.view(4,3)
y
>>
-------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
----> 1 y = x.view(4,3)
      2 y
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.

总结

  1. “view”使用与原始张量相同的内存块,因此该内存块中的任何更改都会影响所有视图以及与其关联的原始张量
  2. 视图可以是连续的或不连续的。一个不连续的张量视图可以转换为连续的张量视图,并且会复制不连续的视图张量到新的内存空间中,因此数据将不再与原始数据块关联
  3. stride位置公式:给定一个stride(A,B,C),索引 (j, k, v) 在 1D 数据数组中的位置为 ( A ∗ j + B ∗ k + C ∗ v A *j + B*k + C*v Aj+Bk+Cv)
  4. view() 和 reshape() 之间的区别:view() 不能应用于 '非连续的张量/视图,它返回一个视图;reshape() 可以应用于“连续”和“非连续”张量/视图

参考文献
1、浅谈 PyTorch 中的 tensor 及使用
2、PyTorch 的 Autograd
3、Pytorch入坑二:autograd 及Variable
4、[Pytorch] Contiguous vs Non-Contiguous Tensor / View — Understanding view(), reshape(), transpose()

  • 8
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 可以使用PyTorch的transforms模块来得到图像数据的totensor前的数据。例如,可以使用transforms.ToPILImage()来从tensor转换回PIL图像,或者使用transforms.ToTensor()将PIL图像转换为tensor。 ### 回答2: 在PyTorch,可以使用PIL库的Image来读取图像数据。具体步骤如下: 1. 首先,需要引入必要的库: ```python from PIL import Image ``` 2. 使用Image.open()函数加载图像文件。这个函数会返回一个表示图像的PIL.Image对象。假设我们的图像文件为image.jpg,可以使用以下代码加载图像: ```python image = Image.open("image.jpg") ``` 3. 图像加载后,可以通过调用PIL.Image对象的一些方法来获取图像的各种信息,比如图像的大小、通道数等。例如,要获取图像的宽度,可以使用以下代码: ```python width = image.width ``` 4. 如果需要查看图像的内容,可以调用PIL.Image对象的show()方法。例如,要显示图像,可以使用以下代码: ```python image.show() ``` 5. 如果需要对图像进行预处理,比如调整大小、剪裁、旋转等,可以使用PIL.Image对象的一些方法来实现。例如,要将图像调整为指定大小,可以使用以下代码: ```python new_image = image.resize((new_width, new_height)) ``` 需要注意的是,在对图像进行预处理之前,最好将图像转换为RGB模式,因为PyTorch默认将图像读取为RGB格式的数据。可以使用以下代码将图像转换为RGB模式: ```python rgb_image = image.convert("RGB") ``` 通过以上步骤,我们可以在PyTorch获取到totensor前的原始图像数据,并进行一些必要的操作和预处理。 ### 回答3: 在PyTorch,我们可以使用PIL库(Python Imaging Library)来读取图像数据。以下是一种常用的获取totensor之前的图像数据的方式: 首先,我们需要安装PIL库,可以使用以下命令来安装: ``` pip install Pillow ``` 然后,在Python代码引入PIL库: ```python from PIL import Image ``` 接下来,使用PIL库的`open`函数来读取图像文件,例如: ```python image = Image.open('image.jpg') ``` 这将返回一个`Image`对象,其包含图像的原始数据。 如果要查看图像的大小和类型等信息,可以使用`size`和`mode`属性: ```python image_size = image.size image_mode = image.mode ``` 此外,还可以使用`convert`方法将图像转换为不同的模式,例如: ```python image_gray = image.convert('L') ``` 在获取到图像数据后,可以根据需求进行进一步的操作,例如调整图像大小、裁剪图像、对图像进行增强等。 最后,如果需要将图像数据转换为Tensor形式,可以使用PyTorch的transforms模块的`ToTensor`方法: ```python import torchvision.transforms as transforms transform = transforms.ToTensor() image_tensor = transform(image) ``` 通过上述方法,我们可以在PyTorch获取到totensor前的图像数据,并将其转换为Tensor格式,以便进行后续的深度学习任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值