发明微积分

微分和积分,都是一种数学思想,我们借用数学工具,达到了我们完成微分和积分的效果
还是那句话
学数学不要是为了懂数学
学数学是要为了懂得思考
通过不断丰富手中的数学工具,通过已知推到未知,从而不断掌握新的数学工具
学会假设,掌握假设的精髓就是:(1)不用怕犯错,不要认为自己一次就能设计对
(2)假设后还需要进行多方的验证,如果能正确符合我们的观察, 能运用于实际,即可。


目前我们已知掌握的是加减乘除,直线斜率,直线公式,勾股定理,交换律和分配律
积分和微分的思想,都是我们现实生活中最常见的常识和直觉。

由微分的思想,利用斜率(导数)的数学工具,得到从常数映射y=9、直线映射y=2x+3、曲线映射 y = x 2 2 y=\frac{x^2}{2} y=2x2 y = x 3 6 y=\frac{x^3}{6} y=6x3在某一点的斜率(陡峭度、导数),从而发明数学上的微分(求导)

f ′ ( x ) = d f ( x ) d x f'(x)=\frac{df(x)}{dx} f(x)=dxdf(x)


由积分的思想,利用斜率(导数)的数学工具,求x在0-1之间 y = x 2 2 y=\frac{x^2}{2} y=2x2与x轴相交的面积,从而发明数学上的积分

∫ a b f ′ ( x ) d x = f ( b ) − f ( a ) \int_a^bf'(x)dx = f(b)-f(a) abf(x)dx=f(b)f(a)


数学的精髓不是将简单事情便复杂,而是将复杂的事情变简单



发明微积分的直觉,无限放大歪曲的部分,就会发现其越来越直

将歪曲的部分,无限放大后,当作直线处理

将无限放大点的陡峭程度,定义为无限接近的两点之间的垂直移动距离除以水平距离


斜率就是陡峭程度,按我们的常识直觉,我们发现一条直线的陡峭程度,是和水平移动距离和垂直移动距离相关,然后我们根据除法和减法,发明了陡峭程度是垂直移动距离和水平移动距离的比值,即斜率=垂直移动距离/水平移动距离


常数映射公式,在任意一点的,移动了非常小的一步,的斜率

举实例如下:Mapping(x) = 9

在这里插入图片描述

该常数映射:Mapping(x) =9,在任意一点的,移动了非常小的一步 Δ x \Delta x Δx,的斜率

Mapping(x) =9的斜率 = M ( x + Δ x ) − M ( x ) Δ x \frac{M(x+\Delta x)-M(x)}{\Delta x} ΔxM(x+Δx)M(x)= 9 − 9 Δ x \frac{9-9}{\Delta x} Δx99= 0 Δ x \frac{0}{\Delta x} Δx0= 0 × 1 Δ x = 0 0 \times \frac{1}{\Delta x}=0 0×Δx1=0


直线映射公式,在任意一点,移动了非常小的一步,的斜率

举实例如下:Mapping(x) = 2x+3,在任意一点的,移动了非常小的一步 Δ x \Delta x Δx,的斜率


y = x 2 2 y=\frac{x^2}{2} y=2x2曲线的映射公式,在任意一点,移动了非常小的一步,的斜率

举实例如下: M a p p i n g ( x ) = x 2 2 Mapping(x) = \frac{x^2}{2} Mapping(x)=2x2,在任意一点的,移动了非常小的一步 Δ x \Delta x Δx,的斜率

M a p p i n g ( x ) = x 2 2 Mapping(x) = \frac{x^2}{2} Mapping(x)=2x2的斜率=x

y = x 2 2 y=\frac{x^2}{2} y=2x2曲线的斜率公式y=x在0到1之间求累加,即求如下0到1之间的y=x与x轴相围成的三角形面积

根据三角形面积公式area= a × b 2 \frac{a \times b}{2} 2a×b

累加= 1 × 1 2 = 1 2 \frac{1\times 1}{2}=\frac{1}{2} 21×1=21

表示的是 Δ x × 斜率 x \Delta x \times 斜率x Δx×斜率x在0到1之间的求和,即 ∑ 0 1 Δ x × x = 1 2 \sum_{0}^1 \Delta x \times x=\frac{1}{2} 01Δx×x=21


∑ 0 1 Δ x × M ′ ( x ) = 1 2 \sum_{0}^1 \Delta x \times M'(x)=\frac{1}{2} 01Δx×M(x)=21

∑ 0 1 Δ x × M ( x + Δ x ) − M ( x ) Δ x = 1 2 \sum_{0}^1 \Delta x \times \frac {M(x+ \Delta x)-M(x)}{\Delta x}=\frac{1}{2} 01Δx×ΔxM(x+Δx)M(x)=21

∑ 0 1 ( M ( x + Δ x ) − M ( x ) ) = 1 2 \sum_{0}^1 (M(x+ \Delta x)-M(x))=\frac{1}{2} 01(M(x+Δx)M(x))=21


在这里插入图片描述

y = x 3 6 y=\frac{x^3}{6} y=6x3曲线的映射公式,在任意一点,移动了非常小的一步,的斜率

举实例如下: M a p p i n g ( x ) = x 3 6 Mapping(x) = \frac{x^3}{6} Mapping(x)=6x3,在任意一点的,移动了非常小的一步 Δ x \Delta x Δx,的斜率

M a p p i n g ( x ) = x 3 6 Mapping(x) = \frac{x^3}{6} Mapping(x)=6x3的斜率=y= x 2 2 \frac{x^2}{2} 2x2


发明了微分,为后面的积分铺平了道路,因为为了达到积分的效果,我们假设了假设M(x)是某个映射公式Q(x)的导数(斜率、陡峭程度),而导数的得到,是我们通过微分的思想得到的。


在这里插入图片描述


Δ x \Delta x Δx足够小的时候,梯形趋向成矩形


在这里插入图片描述

已知: M a p p i n g ( x ) = x 2 2 Mapping(x) = \frac{x^2}{2} Mapping(x)=2x2的斜率=x


Δ x × M ( x ) \Delta x \times M(x) Δx×M(x)


求x在0-1之间 y = x 2 2 y=\frac{x^2}{2} y=2x2与x轴相交的面积

在这里插入图片描述
将面积定义为:

∑ x = 0 1 Δ x × M ( x ) = 1 6 \sum_{x=0}^1 \Delta x \times M(x)=\frac{1}{6} x=01Δx×M(x)=61

为什么是 1 6 \frac{1}{6} 61


y = x 2 2 y=\frac{x^2}{2} y=2x2原公式就是他导数的积分。


假设M(x)是某个映射公式Q(x)的导数(斜率、陡峭度)(*核心*)


M ( x ) = d Q d x M(x)= \frac{dQ}{dx} M(x)=dxdQ

则面积推导为

∑ x = 0 1 Δ x × M ( x ) = ∑ x = 0 1 Δ x × d Q d x = ∑ x = 0 1 d Q \sum_{x=0}^1 \Delta x \times M(x)=\sum_{x=0}^1 \Delta x \times \frac{dQ}{dx}=\sum_{x=0}^1 dQ x=01Δx×M(x)=x=01Δx×dxdQ=x=01dQ

dQ表示的是M(x+dx)-M(x),无限接近两点高度之差,所以计算x从0到1,沿途累计的M变化高度差和

即将我们不可知的曲线M(x)面积转为可知的Q(x)高度差的计算

因此即表示从0到1之间的高度总变化

在这里插入图片描述

还不懂,直接举实例,让x从0.1,0.2,0.3,…,1 , Δ x \Delta x Δx=0.1,进行实际模拟

二 求 y = x 2 2 y=\frac{x^2}{2} y=2x2在0到1之间曲线的长度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值