讲讲似然比检验

本文深入探讨了似然比检验的原理,包括似然函数、极大似然估计及似然比检验的应用。似然函数用于估计未知参数,极大似然估计则寻找使观测结果概率最大的参数值。似然比检验通过比较不同参数假设下的似然性,判断原假设是否成立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总第239篇/张俊红

前面我们讲了T检验、F检验、Q检验等。这一篇来讲讲似然比检验。在讲似然比检验之前,我们先讲两个与似然比相关的概念:似然函数与极大似然估计。

似然函数

说到似然函数,就不得不说一下似然性了,似然性是与概率相对应的一个概念。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。

我们知道正态分布的概率密度函数的中主要有两个参数:均值和标准差。如果我们知道了数据服从正态分布,也知道该分布对应的均值和标准差,这个时候我们就知道每个值发生的可能性,这就是概率;如果我们不知道分布对应的均值和标准差,但是可以观测到已经发生的一些值,那么通过已经观测到的结果值对分布对应的均值和标准差进行估计的过程就是似然性。

已经观测到的值x与要估计的参数θ之间会构造出来一个函数,这个函数就是似然函数:L(θ|x)。

似然函数L(θ|x)(在数值上)等于给定参数θ后变量X整体观测结果的概率,等于每一个x取值的概率乘积。

如果已知了变量x的分布,那么每个x发生的概率就是其概率密度函数得出。

极大似然估计

知道什么是似然函数以后,我们再来看看什么是极大似然估计。用一句话来描述就是:极大似然估计是求取使观测到的结果概率P(X = x|θ)最大化时对应的参数θ的取值。

其实就是求似然函数L(θ|x)最大时对应的θ值,我们知道,要求最值,一般都是对函数求导即可,这里对函数L(θ|x)求导,即可得到θ值。

似然比检验

了解完似然函数和极大似然估计以后,我们再来看我们今天的主题,似然比检验。

似然比检验和其他检验思想比较类似,似然比检验的核心是根据似然比这个统计量来进行判断,其他检验是根据其他统计量来进行判断,比如t检验是根据t统计量来进行判断。

似然比检验的原假设H0是:θ=θ0,备择假设H1:θ=θ1,其中θ0是θ1的子集。

似然比的公式如下:

似然比表示θ取不同值对应的似然函数的比值。如果λ很大,说明参数θ=θ1时对应的似然性要比θ=θ0时对应的似然性大。此时,更倾向于拒绝H0假设;反之,若此值较小,说明参数θ=θ0时对应的似然性要比θ=θ1时对应的似然性大,更倾向于接受H0假设。

那λ到底大于多少算大,小于多少算小呢?这个时候就需要有个临界值λ0,如果λ>λ0,那么就拒绝H0假设。

接下来的问题就是求取λ0,要临界值λ0,必须知道当H0成立时λ的分布,当n足够大时,λ是服从卡方分布的,知道分布,然后再根据显著性水平α就可以计算出临界值了。

以上就是关于似然比检验相关的内容。

### 似然比检验与Wald检验统计学差异 #### 定义与计算方式 似然比检验(Likelihood Ratio Test, LRT)基于两个模型的最大化对数似然函数之差来进行假设测试。具体来说,LRT比较无约束条件下的最大似然估计值和有特定参数等于零或其他固定值情况下得到的结果之间的差距[^4]。 相比之下,Wald检验则是利用单个或多个参数在其标准误基础上构建Z分数或者t统计量来判断该参数是否显著不同于某个给定数值(通常是0),其核心思想在于如果一个参数的真实值远离原假设所设定的位置,则对应的观测到的数据应该很少见于由这个假设计算出来的分布之中。 #### 应用场景 对于复杂模型结构以及非线性关系的研究中,似然比检验通常被认为更加稳健可靠,因为它直接衡量了整个模型拟合度的变化而不是仅仅依赖于单一参数的标准误差估计;然而,在某些情形下特别是当样本容量较大时,两种方法往往给出相似结论[^3]。 另一方面,由于Wald检验只需要知道当前最优解处的信息矩阵即可完成推断过程而无需重新优化目标函数,因此在实践中更为便捷高效,尤其是在实时更新环境中或是面对大规模数据集的时候显示出优势。 ```r # R语言实现示例:使用lmtest包执行这两种检验 library(lmtest) # 构建基础模型 model_full <- glm(y ~ x1 + x2, data=mydata,family=binomial()) model_reduced <- glm(y ~ x1, data=mydata,family=binomial()) # 执行LR检验 lr_test_result <- lrtest(model_reduced,model_full) # 执行Wald检验 wald_test_result <- waldtest(model_reduced,model_full) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊红的数据分析之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值