数论 —— 高斯记号(Gauss mark)

文章介绍了高斯记号,包括取整和取小的定义,以及它们在数论中的使用。通过例题展示了如何利用高斯记号解方程,解释了如何根据高斯记号的性质分析和讨论方程的解。最后,探讨了一个关于高斯记号的周期性问题,找到无解的自然数k的规律,并计算了特定数量k的和。
摘要由CSDN通过智能技术生成

定义

数学上,高斯记号(Gauss mark)是指对取整符号和取小符号的统称,用于数论等领域。

  • x ∈ R x \in \textbf{R} xR,用 [ x ] [x] [x] 表示不超过 x x x 的最大整数。也可记作 [ x ] [x] [x]
  • x ∈ R x \in \textbf{R} xR,用 { x } \{x\} {x} 表示 x x x 的非负纯小数,即 { x } = x - [ x ] \{x\}=x-[x] {x}=x[x]

例如

  • [1]=1
  • [0]=0
  • [-1]=-1
  • [-1.2]=-2
  • {1.5}=0.5
  • {-1.5}=0.5
  • {-1.2}=0.8

性质

  • 对于任意实数 x,x=[x]+{x}
  • x-1<[x]≤x<[x]+1
  • [n+x]=n+[x],n 为整数
  • [x]+[y]≤[x+y]≤[x]+[y]+1

例题

解方程 x + 2 { x } = 3 [ x ] x+2\{x\}=3[x] x+2{x}=3[x]

思路

使用定义 x=[x]+{x}

解题

根据定义 x=[x]+{x},带入原方程变为 [x]+3{x}=3[x]
2[x]=3{x}
∵ 0 ≤ { x } < 1 \because 0≤\{x\}<1 0{x}<1
∴ 0 ≤ 3 { x } < 3 \therefore 0≤3\{x\}<3 03{x}<3
∵ [ x ] \because [x] [x] 一定是一个整数。
∴ 3 { x } = 0 , 1 , 2 \therefore 3\{x\}=0,1,2 3{x}=0,1,2
∵ 2 [ x ] \because 2[x] 2[x] 一定是一个偶数。
∴ 3 { x } = 0 , 2 \therefore 3\{x\}=0,2 3{x}=0,2
带入原式进行讨论。

  • 3 { x } = 0 3\{x\}=0 3{x}=0 的时候, { x } = 0 \{x\}=0 {x}=0,对应 [ x ] = 0 [x]=0 [x]=0,即 x = 0 x=0 x=0
  • 3 { x } = 2 3\{x\}=2 3{x}=2 的时候, { x } = 2 3 \{x\}=\frac{2}{3} {x}=32,对应 [ x ] = 1 [x]=1 [x]=1,即 x = 5 3 x=\frac{5}{3} x=35

解方程 [ x ] { x } + x = 2 { x } + 10 [x]\{x\}+x=2\{x\}+10 [x]{x}+x=2{x}+10

思路

根据性质,可得 0 ≤ { x } < 1 0≤\{x\}<1 0{x}<1
我们可以将方程变成 { x } = . . . \{x\}=... {x}=... 形式。

解题

根据定义 x=[x]+{x},带入原方程变为 [x]{x}+[x]+{x}=2{x}+10
合并同类项
[x]{x}-{x}=10-[x]
{x}([x]-1)=10-[x]
{ x } = 10 − [ x ] [ x ] − 1 \{x\} = \frac{10-[x]}{[x]-1} {x}=[x]110[x]
∵ 0 ≤ { x } < 1 \because 0≤\{x\}<1 0{x}<1
∴ 0 ≤ 10 − [ x ] [ x ] − 1 < 1 \therefore 0≤\frac{10-[x]}{[x]-1}<1 0[x]110[x]<1
由于分子分母都含有 [ x ] [x] [x],因此需要对分母进行配方。
10 − [ x ] [ x ] − 1 = 9 + 1 − [ x ] [ x ] − 1 = 9 − ( [ x ] − 1 ) [ x ] − 1 \frac{10-[x]}{[x]-1}=\frac{9+1-[x]}{[x]-1}=\frac{9-([x]-1)}{[x]-1} [x]110[x]=[x]19+1[x]=[x]19([x]1)
0 ≤ 9 − ( [ x ] − 1 ) [ x ] − 1 < 1 0≤\frac{9-([x]-1)}{[x]-1}<1 0[x]19([x]1)<1
0 ≤ 9 [ x ] − 1 − 1 < 1 0≤\frac{9}{[x]-1}-1<1 0[x]191<1
1 ≤ 9 [ x ] − 1 < 2 1≤\frac{9}{[x]-1}<2 1[x]19<2
1 ≥ [ x ] − 1 9 > 1 2 1\ge \frac{[x]-1}{9}>\frac{1}{2} 19[x]1>21
9 ≥ [ x ] − 1 > 4.5 9 \ge [x]-1 > 4.5 9[x]1>4.5
10 ≥ [ x ] > 5.5 10 \ge [x] > 5.5 10[x]>5.5
∴ [ x ] = 6 , 7 , 8 , 9 , 10 \therefore [x]=6,7,8,9,10 [x]=6,7,8,9,10
带入原式进行讨论。

  • [ x ] = 6 [x]=6 [x]=6 时候,原方程为 x = 10 − 6 6 − 1 = 4 5 {x}=\frac{10-6}{6-1}=\frac{4}{5} x=61106=54,即 x = 6.8 x=6.8 x=6.8
  • [ x ] = 7 [x]=7 [x]=7 时候,原方程为 x = ( 10 − 7 ) / ( 7 − 1 ) = 3 / 6 {x}=(10-7)/(7-1)=3/6 x=(107)/(71)=3/6,即 x = 7.5 x=7.5 x=7.5
  • [ x ] = 8 [x]=8 [x]=8 时候,原方程为 x = ( 10 − 8 ) / ( 8 − 1 ) = 2 / 7 {x}=(10-8)/(8-1)=2/7 x=(108)/(81)=2/7,即 x = 8 + 2 / 7 x=8+2/7 x=8+2/7
  • [ x ] = 9 [x]=9 [x]=9 时候,原方程为 x = ( 10 − 9 ) / ( 9 − 1 ) = 1 / 8 {x}=(10-9)/(9-1)=1/8 x=(109)/(91)=1/8,即 x = 9.125 x=9.125 x=9.125
  • [ x ] = 10 [x]=10 [x]=10 时候,原方程为 x = ( 10 − 10 ) / ( 10 − 1 ) = 0 {x}=(10-10)/(10-1)=0 x=(1010)/(101)=0,即 x = 10 x=10 x=10

关于 x 的方程 [ x 2 ] + [ x 3 ] = k [\frac{x}{2}]+[\frac{x}{3}]=k [2x]+[3x]=k 无解的自然数 k 排成一行,其前 2018 个 k 值之和等于多少?

思路

看到 x 2 \frac{x}{2} 2x x 3 \frac{x}{3} 3x,自然想到了周期问题。

解题

2 2 2 3 3 3 的最小公倍数为 2 × 3 = 6 2 \times 3=6 2×3=6。因此对周期 6 6 6 进行枚举。
为了让大家更容易看出周期问题的套路,我们对 0 ∼ 11 0 \sim 11 011 进行枚举。

x012345
k = [ x 2 ] + [ x 3 ] k=[\frac{x}{2}]+[\frac{x}{3}] k=[2x]+[3x]001233
x67891011
k = [ x 2 ] + [ x 3 ] k=[\frac{x}{2}]+[\frac{x}{3}] k=[2x]+[3x]556788

如上图。

  • x = 0 x=0 x=0 x = 6 x=6 x=6 是同周期的。
  • x = 1 x=1 x=1 x = 7 x=7 x=7 是同周期的。
  • . . . ... ...
  • x = 5 x=5 x=5 x = 11 x=11 x=11 是同周期的。

这样,我们可以轻易发现周期的规律。

  • k = 5 × n + r ,   r ∈ [ 0 , 1 , 2 , 3 ] k=5\times n+r,\ r \in [0,1,2,3] k=5×n+r, r[0,1,2,3] 方程有解。
  • k = 5 × n + r ,   r ∈ [ 4 ] k=5\times n+r,\ r \in [4] k=5×n+r, r[4] 方程无解。

这样,我们可以构造出所有解的序列为 k = 5 × n + 4 ,   n ∈ [ 0 , 1 , 2 , . . . ] k=5 \times n+4,\ n \in [0,1,2,...] k=5×n+4, n[0,1,2,...]

这样前 2018 2018 2018 k k k 序列即为 4 , 9 , 14 , . . . , 5 × 2017 + 4 = 10 , 089 4,9,14,...,5 \times 2017+4=10,089 4,9,14,...,5×2017+4=10,089

本题答案即为 ∑ S = 4 + 9 + 14 + . . . + 10089 \sum S=4+9+14+...+10089 S=4+9+14+...+10089

根据等差数列求和公式可得,首项为 4 4 4,公差为 d = 5 d=5 d=5,项数为 2018 2018 2018

∑ S = 4 × 2018 + 2018 × 2017 × 5 2 = 10 , 183 , 837 \sum S=4 \times 2018+\frac{2018 \times 2017 \times 5}{2}=10,183,837 S=4×2018+22018×2017×5=10,183,837

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值