定义
数学上,高斯记号(Gauss mark)是指对取整符号和取小符号的统称,用于数论等领域。
- 设 x ∈ R x \in \textbf{R} x∈R,用 [ x ] [x] [x] 表示不超过 x x x 的最大整数。也可记作 [ x ] [x] [x]。
- 设 x ∈ R x \in \textbf{R} x∈R,用 { x } \{x\} {x} 表示 x x x 的非负纯小数,即 { x } = x - [ x ] \{x\}=x-[x] {x}=x-[x]。
例如
- [1]=1
- [0]=0
- [-1]=-1
- [-1.2]=-2
- {1.5}=0.5
- {-1.5}=0.5
- {-1.2}=0.8
性质
- 对于任意实数 x,x=[x]+{x}
- x-1<[x]≤x<[x]+1
- [n+x]=n+[x],n 为整数
- [x]+[y]≤[x+y]≤[x]+[y]+1
例题
解方程 x + 2 { x } = 3 [ x ] x+2\{x\}=3[x] x+2{x}=3[x]
思路
使用定义 x=[x]+{x}
解题
根据定义 x=[x]+{x},带入原方程变为 [x]+3{x}=3[x]
2[x]=3{x}
∵
0
≤
{
x
}
<
1
\because 0≤\{x\}<1
∵0≤{x}<1
∴
0
≤
3
{
x
}
<
3
\therefore 0≤3\{x\}<3
∴0≤3{x}<3
∵
[
x
]
\because [x]
∵[x] 一定是一个整数。
∴
3
{
x
}
=
0
,
1
,
2
\therefore 3\{x\}=0,1,2
∴3{x}=0,1,2
∵
2
[
x
]
\because 2[x]
∵2[x] 一定是一个偶数。
∴
3
{
x
}
=
0
,
2
\therefore 3\{x\}=0,2
∴3{x}=0,2
带入原式进行讨论。
- 当 3 { x } = 0 3\{x\}=0 3{x}=0 的时候, { x } = 0 \{x\}=0 {x}=0,对应 [ x ] = 0 [x]=0 [x]=0,即 x = 0 x=0 x=0。
- 当 3 { x } = 2 3\{x\}=2 3{x}=2 的时候, { x } = 2 3 \{x\}=\frac{2}{3} {x}=32,对应 [ x ] = 1 [x]=1 [x]=1,即 x = 5 3 x=\frac{5}{3} x=35。
解方程 [ x ] { x } + x = 2 { x } + 10 [x]\{x\}+x=2\{x\}+10 [x]{x}+x=2{x}+10
思路
根据性质,可得
0
≤
{
x
}
<
1
0≤\{x\}<1
0≤{x}<1。
我们可以将方程变成
{
x
}
=
.
.
.
\{x\}=...
{x}=... 形式。
解题
根据定义 x=[x]+{x},带入原方程变为 [x]{x}+[x]+{x}=2{x}+10
合并同类项
[x]{x}-{x}=10-[x]
{x}([x]-1)=10-[x]
{
x
}
=
10
−
[
x
]
[
x
]
−
1
\{x\} = \frac{10-[x]}{[x]-1}
{x}=[x]−110−[x]
∵
0
≤
{
x
}
<
1
\because 0≤\{x\}<1
∵0≤{x}<1
∴
0
≤
10
−
[
x
]
[
x
]
−
1
<
1
\therefore 0≤\frac{10-[x]}{[x]-1}<1
∴0≤[x]−110−[x]<1
由于分子分母都含有
[
x
]
[x]
[x],因此需要对分母进行配方。
10
−
[
x
]
[
x
]
−
1
=
9
+
1
−
[
x
]
[
x
]
−
1
=
9
−
(
[
x
]
−
1
)
[
x
]
−
1
\frac{10-[x]}{[x]-1}=\frac{9+1-[x]}{[x]-1}=\frac{9-([x]-1)}{[x]-1}
[x]−110−[x]=[x]−19+1−[x]=[x]−19−([x]−1)
0
≤
9
−
(
[
x
]
−
1
)
[
x
]
−
1
<
1
0≤\frac{9-([x]-1)}{[x]-1}<1
0≤[x]−19−([x]−1)<1
0
≤
9
[
x
]
−
1
−
1
<
1
0≤\frac{9}{[x]-1}-1<1
0≤[x]−19−1<1
1
≤
9
[
x
]
−
1
<
2
1≤\frac{9}{[x]-1}<2
1≤[x]−19<2
1
≥
[
x
]
−
1
9
>
1
2
1\ge \frac{[x]-1}{9}>\frac{1}{2}
1≥9[x]−1>21
9
≥
[
x
]
−
1
>
4.5
9 \ge [x]-1 > 4.5
9≥[x]−1>4.5
10
≥
[
x
]
>
5.5
10 \ge [x] > 5.5
10≥[x]>5.5
∴
[
x
]
=
6
,
7
,
8
,
9
,
10
\therefore [x]=6,7,8,9,10
∴[x]=6,7,8,9,10
带入原式进行讨论。
- 当 [ x ] = 6 [x]=6 [x]=6 时候,原方程为 x = 10 − 6 6 − 1 = 4 5 {x}=\frac{10-6}{6-1}=\frac{4}{5} x=6−110−6=54,即 x = 6.8 x=6.8 x=6.8。
- 当 [ x ] = 7 [x]=7 [x]=7 时候,原方程为 x = ( 10 − 7 ) / ( 7 − 1 ) = 3 / 6 {x}=(10-7)/(7-1)=3/6 x=(10−7)/(7−1)=3/6,即 x = 7.5 x=7.5 x=7.5。
- 当 [ x ] = 8 [x]=8 [x]=8 时候,原方程为 x = ( 10 − 8 ) / ( 8 − 1 ) = 2 / 7 {x}=(10-8)/(8-1)=2/7 x=(10−8)/(8−1)=2/7,即 x = 8 + 2 / 7 x=8+2/7 x=8+2/7。
- 当 [ x ] = 9 [x]=9 [x]=9 时候,原方程为 x = ( 10 − 9 ) / ( 9 − 1 ) = 1 / 8 {x}=(10-9)/(9-1)=1/8 x=(10−9)/(9−1)=1/8,即 x = 9.125 x=9.125 x=9.125。
- 当 [ x ] = 10 [x]=10 [x]=10 时候,原方程为 x = ( 10 − 10 ) / ( 10 − 1 ) = 0 {x}=(10-10)/(10-1)=0 x=(10−10)/(10−1)=0,即 x = 10 x=10 x=10。
关于 x 的方程 [ x 2 ] + [ x 3 ] = k [\frac{x}{2}]+[\frac{x}{3}]=k [2x]+[3x]=k 无解的自然数 k 排成一行,其前 2018 个 k 值之和等于多少?
思路
看到 x 2 \frac{x}{2} 2x 和 x 3 \frac{x}{3} 3x,自然想到了周期问题。
解题
2
2
2 和
3
3
3 的最小公倍数为
2
×
3
=
6
2 \times 3=6
2×3=6。因此对周期
6
6
6 进行枚举。
为了让大家更容易看出周期问题的套路,我们对
0
∼
11
0 \sim 11
0∼11 进行枚举。
x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
k = [ x 2 ] + [ x 3 ] k=[\frac{x}{2}]+[\frac{x}{3}] k=[2x]+[3x] | 0 | 0 | 1 | 2 | 3 | 3 |
x | 6 | 7 | 8 | 9 | 10 | 11 |
k = [ x 2 ] + [ x 3 ] k=[\frac{x}{2}]+[\frac{x}{3}] k=[2x]+[3x] | 5 | 5 | 6 | 7 | 8 | 8 |
如上图。
- x = 0 x=0 x=0 与 x = 6 x=6 x=6 是同周期的。
- x = 1 x=1 x=1 与 x = 7 x=7 x=7 是同周期的。
- . . . ... ...
- x = 5 x=5 x=5 与 x = 11 x=11 x=11 是同周期的。
这样,我们可以轻易发现周期的规律。
- k = 5 × n + r , r ∈ [ 0 , 1 , 2 , 3 ] k=5\times n+r,\ r \in [0,1,2,3] k=5×n+r, r∈[0,1,2,3] 方程有解。
- k = 5 × n + r , r ∈ [ 4 ] k=5\times n+r,\ r \in [4] k=5×n+r, r∈[4] 方程无解。
这样,我们可以构造出所有解的序列为 k = 5 × n + 4 , n ∈ [ 0 , 1 , 2 , . . . ] k=5 \times n+4,\ n \in [0,1,2,...] k=5×n+4, n∈[0,1,2,...]。
这样前 2018 2018 2018 个 k k k 序列即为 4 , 9 , 14 , . . . , 5 × 2017 + 4 = 10 , 089 4,9,14,...,5 \times 2017+4=10,089 4,9,14,...,5×2017+4=10,089。
本题答案即为 ∑ S = 4 + 9 + 14 + . . . + 10089 \sum S=4+9+14+...+10089 ∑S=4+9+14+...+10089。
根据等差数列求和公式可得,首项为 4 4 4,公差为 d = 5 d=5 d=5,项数为 2018 2018 2018。
∑ S = 4 × 2018 + 2018 × 2017 × 5 2 = 10 , 183 , 837 \sum S=4 \times 2018+\frac{2018 \times 2017 \times 5}{2}=10,183,837 ∑S=4×2018+22018×2017×5=10,183,837