数论基础及相关符号

一.数论中的基础概念和符号

1.基础概念

合数:合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数

质(素)数:质(素)数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

整除:若整数b除以非零整数a,商为整数,且余数为零, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”。a叫做b的约数(或因数),b叫做a的倍数。整除属于除尽的一种特殊情况。

公约数:公约数,亦称“公因数”。它是指能同时整除几个整数的数 [1] 。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。对任意的若干个正整数,1总是它们的公因数。

互质:互质是公约数只有1的两个整数,叫做互质整数\n\n同余:数论中的重要概念。给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系

2.常见符号

MOD

mod,要与一般的%相区分

mod意为模意义下结果一定为正

%是一种运算,结果可以为负

同余符号(≡)

两个整数a,b,如果a mod m = b mod m则称a,b对于模m同余

记作a ≡ b ( mod m )

sigma(Σ )

求和符号

∑ i = 1 n i \\sum_{i=1}^{n}{i}\ni=1\n∑\nn\n​\t\n i\n\nsigma的意思是i取值1(下界)到n(上界)后面的表达式的和,这个公式里的值是1 + 2 + 3 + ⋅ ⋅ ⋅ + ( n − 1 ) + n 1+2+3+···+(n-1)+n1+2+3+⋅⋅⋅+(n−1)+n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值