一.数论中的基础概念和符号
1.基础概念
合数:合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数
质(素)数:质(素)数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
整除:若整数b除以非零整数a,商为整数,且余数为零, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”。a叫做b的约数(或因数),b叫做a的倍数。整除属于除尽的一种特殊情况。
公约数:公约数,亦称“公因数”。它是指能同时整除几个整数的数 [1] 。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。对任意的若干个正整数,1总是它们的公因数。
互质:互质是公约数只有1的两个整数,叫做互质整数\n\n同余:数论中的重要概念。给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系
2.常见符号
MOD
mod,要与一般的%相区分
mod意为模意义下结果一定为正
%是一种运算,结果可以为负
同余符号(≡)
两个整数a,b,如果a mod m = b mod m则称a,b对于模m同余
记作a ≡ b ( mod m )
sigma(Σ )
求和符号
∑ i = 1 n i \\sum_{i=1}^{n}{i}\ni=1\n∑\nn\n\t\n i\n\nsigma的意思是i取值1(下界)到n(上界)后面的表达式的和,这个公式里的值是1 + 2 + 3 + ⋅ ⋅ ⋅ + ( n − 1 ) + n 1+2+3+···+(n-1)+n1+2+3+⋅⋅⋅+(n−1)+n