数论高斯记号作业

求满足 [ x 2 ] + [ x + 1 3 ] + [ x + 2 5 ] = x [\frac{x}{2}]+[\frac{x+1}{3}]+[\frac{x+2}{5}]=x [2x]+[3x+1]+[5x+2]=x的所有 x x x 值之和。

∵ \because gcd(2,3,5)=30
∴ x = 30 k + r ,   k ∈ Z ,   − 15 ≤ r ≤ 14 \therefore x=30k+r,\ k \in \mathbb{Z},\ -15 \leq r \leq 14 x=30k+r, kZ, 15r14
带入原方程
[ x 2 ] + [ x + 1 3 ] + [ x + 2 5 ] = [ 30 k + r 2 ] + [ 30 k + r + 1 3 ] + [ 30 k + r + 2 5 ] = [ 30 k 2 + r 2 ] + [ 30 k 3 + r + 1 3 ] + [ 30 k 5 + r + 2 5 ] = [ 15 k + r 2 ] + [ 10 k + r + 1 3 ] + [ 6 k + r + 2 5 ] = 15 k + [ r 2 ] + 10 k + [ r + 1 3 ] + 6 k + [ r + 2 5 ] = 31 k + [ r 2 ] + [ r + 1 3 ] + [ r + 2 5 ] = 30 k + r [\frac{x}{2}]+[\frac{x+1}{3}]+[\frac{x+2}{5}]\\ =[\frac{30k+r}{2}]+[\frac{30k+r+1}{3}]+[\frac{30k+r+2}{5}]\\ =[\frac{30k}{2}+\frac{r}{2}]+[\frac{30k}{3}+\frac{r+1}{3}]+[\frac{30k}{5}+\frac{r+2}{5}]\\ =[15k+\frac{r}{2}]+[10k+\frac{r+1}{3}]+[6k+\frac{r+2}{5}]\\ =15k+[\frac{r}{2}]+10k+[\frac{r+1}{3}]+6k+[\frac{r+2}{5}]\\ =31k+[\frac{r}{2}]+[\frac{r+1}{3}]+[\frac{r+2}{5}]\\ =30k+r [2x]+[3x+1]+[5x+2]=[230k+r]+[330k+r+1]+[530k+r+2]=[230k+2r]+[330k+3r+1]+[530k+5r+2]=[15k+2r]+[10k+3r+1]+[6k+5r+2]=15k+[2r]+10k+[3r+1]+6k+[5r+2]=31k+[2r]+[3r+1]+[5r+2]=30k+r
∴ [ r 2 ] + [ r + 1 3 ] + [ r + 2 5 ] = r − k \therefore [\frac{r}{2}]+[\frac{r+1}{3}]+[\frac{r+2}{5}]=r-k [2r]+[3r+1]+[5r+2]=rk
∴ r 2 + r + 1 3 + r + 2 5 − 3 < r − k ≤ r 2 + r + 1 3 + r + 2 5 \therefore \frac{r}{2}+\frac{r+1}{3}+\frac{r+2}{5}-3<r-k \leq \frac{r}{2}+\frac{r+1}{3}+\frac{r+2}{5} 2r+3r+1+5r+23<rk2r+3r+1+5r+2
∴ r 2 + r + 1 3 + r + 2 5 − r − 3 < − k ≤ r 2 + r + 1 3 + r + 2 5 − r \therefore \frac{r}{2}+\frac{r+1}{3}+\frac{r+2}{5}-r-3<-k \leq \frac{r}{2}+\frac{r+1}{3}+\frac{r+2}{5}-r 2r+3r+1+5r+2r3<k2r+3r+1+5r+2r
∴ 15 r + 10 r + 10 + 6 r + 12 − 30 r 30 − 3 < − k ≤ 15 r + 10 r + 10 + 6 r + 12 − 30 r 30 \therefore \frac{15r+10r+10+6r+12-30r}{30}-3<-k \leq \frac{15r+10r+10+6r+12-30r}{30} 3015r+10r+10+6r+1230r3<k3015r+10r+10+6r+1230r
∴ r − 68 30 < − k ≤ r + 22 30 \therefore \frac{r-68}{30}<-k \leq \frac{r+22}{30} 30r68<k30r+22
∴ 68 − r 30 > k ≥ − r − 22 30 ,   − 15 ≤ r ≤ 14 \therefore \frac{68-r}{30}>k \ge \frac{-r-22}{30},\ -15\leq r \leq 14 3068r>k30r22, 15r14
∴ 68 − r > 30 × k ≥ − r − 22 ,   − 15 ≤ r ≤ 14 \therefore 68-r>30\times k \ge -r-22,\ -15\leq r \leq 14 68r>30×kr22, 15r14
∴ 68 − r > 30 × k ≥ − r − 22 ,   15 ≥ − r ≥ − 14 \therefore 68-r>30\times k \ge -r-22,\ 15\ge -r \ge -14 68r>30×kr22, 15r14
∴ 68 − 15 > 30 × k ≥ − 14 − 22 \therefore 68-15>30\times k \ge -14-22 6815>30×k1422
∴ 53 > 30 × k ≥ − 36 \therefore 53>30\times k \ge -36 53>30×k36
∴ 1.8 > k ≥ − 1.2 \therefore 1.8>k \ge -1.2 1.8>k1.2
∴ k = 1 , 0 , − 1 \therefore k=1,0,-1 k=1,0,1

  1. k = − 1 k=-1 k=1 时候, ∴ 68 − r > − 30 ≥ − r − 22 \therefore 68-r>-30 \ge -r-22 68r>30r22
    68 − r > − 30 → − r > − 98 → r < 98 68-r>-30 \rightarrow -r>-98 \rightarrow r<98 68r>30r>98r<98
    − 30 ≥ − r − 22 → − 8 ≥ − r → 8 ≤ r -30 \ge -r-22 \rightarrow -8 \ge -r \rightarrow 8 \leq r 30r228r8r
    ∴ 8 ≤ r < 98 \therefore 8 \leq r < 98 8r<98
    ∴ 8 ≤ r ≤ 14 \therefore 8 \leq r \leq 14 8r14
    验算 [ r 2 ] + [ r + 1 3 ] + [ r + 2 5 ] = r − k [\frac{r}{2}]+[\frac{r+1}{3}]+[\frac{r+2}{5}]=r-k [2r]+[3r+1]+[5r+2]=rk r = 8 , 14 r=8,14 r=8,14 有解。所以 x = 30 k + r = − 30 + r = − 22 , − 16 x=30k+r=-30+r=-22,-16 x=30k+r=30+r=22,16

  2. k = 0 k=0 k=0 时候,
    ∴ 68 − r > 0 ≥ − r − 22 \therefore 68-r>0 \ge -r-22 68r>0r22
    ∴ − 15 ≤ r ≤ 14 \therefore -15 \leq r \leq 14 15r14
    验算得有解 x = − 12 , − 10 , − 7 , − 6 , − 4 , − 2 , − 1 , 2 , 3 , 4 , 5 , 6 , 9 , 10 , 11 , 12 , 13 x=-12,-10,-7,-6,-4,-2,-1,2,3,4,5,6,9,10,11,12,13 x=12,10,7,6,4,2,1,2,3,4,5,6,9,10,11,12,13

  3. k = 1 k=1 k=1 时候,
    ∴ 68 − r > 30 ≥ − r − 22 \therefore 68-r>30 \ge -r-22 68r>30r22
    ∴ − 15 ≤ r ≤ 14 \therefore -15 \leq r \leq 14 15r14
    验算得有解 x = 15 , 16 , 17 , 19 , 21 , 22 , 25 , 27 , 31 , 37 x=15,16,17,19,21,22,25,27,31,37 x=15,16,17,19,21,22,25,27,31,37

全部得 x = − 22 , − 16 , − 10 , − 7 , − 6 , − 4 , − 2 , − 1 , 2 , 3 , 4 , 5 , 6 , 9 , 10 , 11 , 12 , 13 , 15 , 16 , 17 , 19 , 21 , 22 , 2527 , 31 , 37 x=-22,-16,-10,-7,-6,-4,-2,-1,2,3,4,5,6,9,10,11,12,13,15,16,17,19,21,22,2527,31,37 x=22,16,10,7,6,4,2,1,2,3,4,5,6,9,10,11,12,13,15,16,17,19,21,22,2527,31,37

∑ x = 225 \sum x=225 x=225

已知 0 < a < 1 0<a<1 0<a<1,且满足 [ a + 1 30 ] + [ a + 2 30 ] + . . . + [ a + 29 30 ] = 18 [a+\frac{1}{30}]+[a+\frac{2}{30}]+...+[a+\frac{29}{30}]=18 [a+301]+[a+302]+...+[a+3029]=18,求 [ 10 a ] [10a] [10a] 的值。

∵ 0 < a < 1 \because 0<a<1 0<a<1
∴ 0 + 1 30 < a + 1 30 < 1 + 1 30 \therefore 0+\frac{1}{30}<a+\frac{1}{30}<1+\frac{1}{30} 0+301<a+301<1+301
∴ 0 < a + 1 30 < 2 \therefore 0<a+\frac{1}{30}<2 0<a+301<2
∴ 0 < a + 1 30 < a + 2 30 < . . . < a + 29 30 < 2 \therefore 0<a+\frac{1}{30}<a+\frac{2}{30}<...<a+\frac{29}{30}<2 0<a+301<a+302<...<a+3029<2
∴ 0 < [ a + 1 30 ] < 2 , 0 < [ a + 2 30 ] < 2 , . . . , 0 < [ a + 29 30 ] < 2 \therefore 0<[a+\frac{1}{30}]<2,\\ 0<[a+\frac{2}{30}]<2,\\ ...,\\ 0<[a+\frac{29}{30}]<2 0<[a+301]<2,0<[a+302]<2,...,0<[a+3029]<2
[ a + x 30 ] ,   x ∈ [ 1 , 29 ] [a+\frac{x}{30}], \ x \in [1,29] [a+30x], x[1,29] 一定是 0 或者 1.
根据题意,其中 18 18 18 个等于 1 1 1
∴ [ a + 1 30 ] = [ a + 2 30 ] = . . . = [ a + 11 30 ] = 0 [ a + 12 30 ] = [ a + 13 30 ] = . . . = [ a + 29 30 ] = 1 \therefore [a+\frac{1}{30}]=[a+\frac{2}{30}]=...=[a+\frac{11}{30}]=0\\ [a+\frac{12}{30}]=[a+\frac{13}{30}]=...=[a+\frac{29}{30}]=1 [a+301]=[a+302]=...=[a+3011]=0[a+3012]=[a+3013]=...=[a+3029]=1
∴ 0 < a + 11 30 < 1 , 1 ≤ a + 12 30 < 2 \therefore 0 < a+\frac{11}{30}<1, 1\leq a+\frac{12}{30}<2 0<a+3011<1,1a+3012<2
∴ 18 ≤ 30 a < 19 \therefore 18 \leq 30a < 19 1830a<19
∴ 6 ≤ 10 a < 19 3 \therefore 6 \leq 10a < \frac{19}{3} 610a<319
∴ [ 10 a ] = 6 \therefore [10a] =6 [10a]=6

r r r 满足 [ r + 19 100 ] + [ r + 20 100 ] + [ r + 21 100 ] . . . + [ r + 91 100 ] = 546 [r+\frac{19}{100}]+[r+\frac{20}{100}]+[r+\frac{21}{100}]...+[r+\frac{91}{100}]=546 [r+10019]+[r+10020]+[r+10021]...+[r+10091]=546,求 [ 100 r ] [100r] [100r] 的值

解:
[ r + 19 100 ] + [ r + 20 100 ] + [ r + 21 100 ] . . . + [ r + 91 100 ] = [ [ r ] + { r } + 19 100 ] + [ [ r ] + { r } + 20 100 ] + [ [ r ] + { r } + 21 100 ] + . . . + [ [ r ] + { r } + 91 100 ] = [ r ] + [ { r } + 19 100 ] + [ r ] + [ { r } + 20 100 ] + [ r ] + [ { r } + 21 100 ] + . . . + [ r ] + [ { r } + 91 100 ] = 73 [ r ] + [ { r } + 19 100 ] + [ { r } + 20 100 ] + [ { r } + 21 100 ] + . . . + [ { r } + 91 100 ] = 546 [r+\frac{19}{100}]+[r+\frac{20}{100}]+[r+\frac{21}{100}]...+[r+\frac{91}{100}]\\ =[[r]+\{r\}+\frac{19}{100}]+[[r]+\{r\}+\frac{20}{100}]+[[r]+\{r\}+\frac{21}{100}]+...+[[r]+\{r\}+\frac{91}{100}]\\ =[r]+[\{r\}+\frac{19}{100}]+[r]+[\{r\}+\frac{20}{100}]+[r]+[\{r\}+\frac{21}{100}]+...+[r]+[\{r\}+\frac{91}{100}]\\ =73[r]+[\{r\}+\frac{19}{100}]+[\{r\}+\frac{20}{100}]+[\{r\}+\frac{21}{100}]+...+[\{r\}+\frac{91}{100}]=546 [r+10019]+[r+10020]+[r+10021]...+[r+10091]=[[r]+{r}+10019]+[[r]+{r}+10020]+[[r]+{r}+10021]+...+[[r]+{r}+10091]=[r]+[{r}+10019]+[r]+[{r}+10020]+[r]+[{r}+10021]+...+[r]+[{r}+10091]=73[r]+[{r}+10019]+[{r}+10020]+[{r}+10021]+...+[{r}+10091]=546
∵ 546 = 73 × 7 + 35 \because 546=73 \times 7+35 546=73×7+35
∴ [ r ] = 7 \therefore [r]=7 [r]=7
∴ [ { r } + 19 100 ] + [ { r } + 20 100 ] + [ { r } + 21 100 ] + . . . + [ { r } + 91 100 ] = 35 \therefore [\{r\}+\frac{19}{100}]+[\{r\}+\frac{20}{100}]+[\{r\}+\frac{21}{100}]+...+[\{r\}+\frac{91}{100}]=35 [{r}+10019]+[{r}+10020]+[{r}+10021]+...+[{r}+10091]=35
∵ 19 100 ≤ { r } + 19 100 < 2 , 20 100 ≤ { r } + 20 100 < 2 , . . . , 91 100 ≤ { r } + 91 100 < 2 \because \frac{19}{100} \leq \{r\}+\frac{19}{100}<2, \frac{20}{100} \leq \{r\}+\frac{20}{100}<2,...,\frac{91}{100} \leq \{r\}+\frac{91}{100}<2 10019{r}+10019<2,10020{r}+10020<2,...,10091{r}+10091<2
∴ [ { r } + 19 100 ] \therefore [\{r\}+\frac{19}{100}] [{r}+10019] 0 0 0 或者 1 1 1
∵ \because 数列是严格单调递增
∴ \therefore 有前 73 − 35 = 38 73-35=38 7335=38 项为 0 0 0,后 35 35 35 项为 1 1 1
∴ 43 100 ≤ { r } < 44 100 \therefore \frac{43}{100} \leq \{r\} <\frac{44}{100} 10043{r}<10044
∴ 43 ≤ 100 { r } < 100 \therefore 43 \leq 100\{r\} <100 43100{r}<100
∴ [ 100 × { r } ] = 43 \therefore [100 \times \{r\}]=43 [100×{r}]=43
∴ [ 100 r ] = [ 100 × ( [ r ] + { r } ) ] = [ 100 × ( 7 + { r } ) ] = 700 + 43 = 743 \therefore [100r]=[100\times([r]+\{r\})]=[100\times(7+\{r\})]=700+43=743 [100r]=[100×([r]+{r})]=[100×(7+{r})]=700+43=743

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值