目标检测中的一些评价标准(ACC,Precision,recall,AP,MAP,F1Score,ROC,AUC)
介绍这些之前,应该了解一下最基本的TP,TN,FP,FN.
先看一下下面这些解释。
True positives: 简称为TP,即正样本被正确识别为正样本,飞机的图片被正确的识别成了飞机。
True negatives: 简称为TN,即负样本被正确识别为负样本,大雁的图片没有被识别出来,系统正确地认为它们是大雁。
False Positives: 简称为FP,即负样本被错误识别为正样本,大雁的图片被错误地识别成了飞机。
False negatives: 简称为FN,即正样本被错误识别为负样本,飞机的图片没有被识别出来,系统错误地认为它们是大雁。
我相信你早就已经看过无数遍这几个例子了,但是是不是真正用的时候还是会把它们搞混。(哈哈,反正我就是,可能是我太菜了!!!)下面我来讲一下我记这几个东西的技巧。
首先,T就代表我们的网络识别正确了,F就代表我们的网络学习错误了。
TP:就是我们熟知的正样本识别成正样本。(这个肯定不会有人不懂)
TN:就是网络正确识别出了负样本。
FP:就是网络错误的识别成了正样本。(言外之意就是人家本来是负样本,你却认成了正样本)
FN:就是网络错误的识别成了负样本。(同理)
接下来&#