SVM支持向量机的推导(非常详细)
参考自(https://www.zhihu.com/search?q=svm%E6%8E%A8%E5%AF%BC&utm_content=search_suggestion&type=content)
还有李航的统计学习。
这个总结也不错
这里还有三个讲的超级详细的链接:
链接一
链接二
链接三
支持向量机有三个部分的内容,线性可分支持向量机,软间隔支持向量机,核函数。
目标函数的得出
首先SVM是一个线性分类器,SVM的目标就是找到最大间隔超平面。
我们定义任意的超平面函数为:
看上面的图,最中间的那条线就是(这里的w*就是上面的Wt):(虽然很直观,但是为什么呢?你怎么知道最中间的那个平面就是下面这个表达式呢?其实很简单,因为在这个最中间的平面一边都是大于零的点,另一边都是小于零的点,所以这个平面自然就是下面这个表达式了。)
而我们要求的分类决策函数就是:
这个就是线性可分支持向量机。
所以假设点到平面的距离为r,有下面的公式:
这个我们称为函数间隔,这是我们要求的函数形式,但是不是实际意义上的几何间隔。所以我们将函数间隔和几何间隔进行转化,我们的目标就是要最大化这个间隔。