SVM支持向量机数学推导

本文详细介绍了支持向量机(SVM)的数学推导过程,从二分类问题的表达式到间隔最大化的优化目标,再到软间隔引入和拉格朗日乘子法的应用。通过解决包含松弛变量的优化模型,展示了SVM如何找到最佳分类超平面。最终,利用拉格朗日乘数法得出KKT条件,揭示了SVM的关键特性。
摘要由CSDN通过智能技术生成

SVM(Support Vector Machine)支持向量机数学推导

SVM数学推导过程
还会有“感知机”、“SGD”、“聚类”、“Rademacher复杂度”等相关推导,视本篇情况而定要不要整理发布
给定样本: { ( x i , y i ) } i = 1 n 其中: x i ∈ R d , d 维向量, y i ∈ { + 1 , − 1 } 支持向量机中二分类问题, ± 1 两种标签 分类面表达式: f ( x i ) = ω T x i + b 其中:设样本距离分类面的最小间隔为 a ,则有: { ∀ y i = + 1 , f ( x i ) = ω T x i + b ≥ a ∀ y i = − 1 , f ( x i ) = ω T x i + b ≤ a 可写为: y i ( ω T x i + b ) ≥ a 给定样本:\{ (x_i, y_i) \} ^n _{i=1} \\ 其中:x_i ∈ R^d,d维向量,y_i \in \{ +1,-1 \}支持向量机中二分类问题,±1两种标签 \\ 分类面表达式:f(x_i) = \omega^Tx_i+b\\ 其中:设样本距离分类面的最小间隔为a,则有: \begin {cases} \forall y_i=+1,f(x_i)=\omega^Tx_i+b≥a \\ \forall y_i=-1,f(x_i)=\omega^Tx_i+b≤a \end{cases}\\ 可写为:y_i(\omega^Tx_i+b)≥a\\ 给定样本:{(xi,yi)}i=1n其中:xiRdd维向量,yi{ +1,1}支持向量机中二分类问题,±1两种标签分类面表达式:f(xi)=ωTxi+b其中:设样本距离分类面的最小间隔为a,则有:{ yi=+1,f(xi)=ωTxi+bayi=1,f(xi)=ωTxi+ba可写为:yi(ωTxi+b)a
在这里插入图片描述

优化目标:距离分类面最小的样本点(min),间隔最大化(max)
样本点到直线分类面的距离: ∣ ω T x i + b ∣ ∣ ∣ ω ∣ ∣ 遍历所有样本点,找到最小的样本点到分类面的距离: min ⁡ 1 ≤ i ≤ n ∣ ω T x i + b ∣ ∣ ∣ ω ∣ ∣ 将此距离最大化: max ⁡ ω , b min ⁡ 1 ≤ i ≤ n ∣ ω T x i + b ∣ ∣ ∣ ω ∣ ∣ 样本点到直线分类面的距离:\frac {|\omega^Tx_i+b|} {||\omega||}\\ 遍历所有样本点,找到最小的样本点到分类面的距离: \min _{1≤i≤n} \frac {|\omega^Tx_i+b|} {||\omega||}\\ 将此距离最大化:\max_{\omega,b} \min _{1≤i≤n} \frac {|\omega^Tx_i+b|} {||\omega||} 样本点到直线分类面的距离:∣∣ω∣∣ωTxi+b遍历所有样本点,找到最小的样本点到分类面的距离:1inmin∣∣ω∣∣ωTxi+b将此距离最大化:ω,bmax1inmin∣∣ω∣∣ωTxi+b

max ⁡ ω , b min ⁡ 1 ≤ i ≤ n ∣ ω T x i + b ∣ ∣ ∣ ω ∣ ∣ = max ⁡ ω , b min ⁡ 1 ≤ i ≤ n ∣ ω T x i + b ∣ ∣ ∣ ω ∣ ∣ = max ⁡ ω , b min ⁡ 1 ≤ i ≤ n ∣ ω T x i + b ∣ ∣ ∣ ω ∣ ∣ = max ⁡ ω , b a ∣ ∣ ω ∣ ∣ s . t . y i ( ω T x i + b ) ≥ a , 1 ≤ i ≤ n ( S V M 数学优化模型 0.1 ) ω = a ⋅ ω ^ → = max ⁡ ω ^ , b ^ a ∣ ∣ a ⋅ ω ^ ∣ ∣ s . t . y i ( a ⋅ ω ^ T x i + a ⋅ b ^ ) ≥ a , 1 ≤ i ≤ n = max ⁡ ω ^ , b ^ 1 ∣ ∣ ω ^ ∣ ∣ s . t . y i ( ω ^ T x i + b ^ ) ≥ 1 , 1 ≤ i ≤ n ( S V M 数学优化模型 1.0 ) = min ⁡ ω ^ , b ^ ∣ ∣ ω ^ ∣ ∣ ∣ ∣ ω ^ ∣ ∣ = ω ^ 1 2 + ω ^ 2 2 + ω ^ 3 2 + … … + ω ^ n 2 → = min ⁡ ω ^ , b ^ 1 2 ∣ ∣ ω ^ ∣ ∣ 2 s . t . y i ( ω ^ T x i + b ^ ) ≥ 1 , 1 ≤ i ≤ n ( S V M 数学优化模型 2.0 ) 加入软间隔,引入松弛变量 → = min ⁡ ω ^ , b ^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值