轻量型网络SqueezeNet

轻量型网络SqueezeNet

近些年来深层卷积网络的主要方向集中于提高网络的准确率。而对于相同的正确率,更小的CNN架构可以提供如下优势:(1)在分布式训练中,与服务器通信需求更小。(2)参数更少,从云端下载模型的数据量少。(3)更适合在FPGA等内存受限的设备上部署。基于这些优点,这篇论文提出了SqueezeNet。它在ImageNet上实现了和AlexNet相同的准确率,但是只使用了 1 50 \frac{1}{50} 501AlexNet的参数。更进一步,使用模型压缩技术,可以将SqueezeNet压缩到0.5M,这是AlexNet的 1 510 \frac{1}{510} 5101

结构设计技巧:
(1)使用了 1 × 1 卷 积 代 替 3 × 3  卷积:参数减少为原来的1 /  9 ∘ 1 \times 1卷积代替3\times 3 \text { 卷积:参数减少为原来的1 / } 9_{\circ} 1×13×3 卷积:参数减少为原来的1 / 9
(2)减少输入通道数量:这一部分使用squeeze层来实现。
(3)将下采样操作延后,可以给卷积层提供更大的特征图:更大的激特征图保留了更多的信息,可以获得更高的分类准确率
其中,(1)和(2)可以显著减少参数数量,(3)可以在参数数量受限的情况下提高准确率。

FIRE MODULE

Fire Module是SqueezeNet中的基础构建模块,Fire Module如Figure1所示 :
在这里插入图片描述
squeeze convolution layer: s 1 × 1 s_{1 \times 1} s1×1只使用1x1卷积核,即上面提到的策略(1)。

expand layer: e 1 × 1 和 e 3 × 3 e_{1 \times 1}和e_{3 \times 3} e1×1e3×3使用1x1和3x3卷积核的组合。

Fire module中有3个可调的超参数:(squeeze convolution layer中1x1 卷积核的个数),(expand layer中1x1和3x3卷积核的个数)

使用Fire Module的过程中,令 s 1 × 1 < e 1 × 1 + e 3 × 3 s_{1 \times 1}<e_{1 \times 1}+e_{3 \times 3} s1×1<e1×1+e3×3,这样squeeze layer可以限制输入通道数量,即结构设计技巧提到的技巧(2)。

网络结构

SqueezeNet以卷积层conv1开始,接着使用8个Fire modules (fire 2-9),最后以卷积层conv10结束。每个Fire Module中的Filter数量逐渐增加,并且在conv1,fire4,fire8, 和 conv10这几层之后使用步长为2的Max-Pooling,即将池化层放在相对靠后的位置,这使用了以上的策略(3)。

在这里插入图片描述
如图,左边为原始版本的SqueezeNet,中间为包含简单跳跃连接的改进版本,最右侧为使用复杂跳跃连接的改进版本。

这里有一些细节,例如我们看fire2这个模块在剪枝前的参数是11920,这个参数是怎么计算得到的呢?fire2之前的maxpool1层的输出是555596,之后接着的Squeeze层有16个的1196卷积filter,注意这里是多通道卷积,为了避免与二维卷积混淆,在卷积尺寸末尾写上了通道数。这一层的输出尺寸为555516,之后将输出分别送到expand层中的1x1x16(64个)和3x3x16(64个)进行处理,注意这里不对16个通道进行切分(就是说这里和MobileNet里面的那种深度可分离卷积不一样,这里就是普通的卷积)。为了得到大小相同的输出,对3x3x16的卷积输入进行尺寸为1的zero padding。分别得到和1x1x16卷积的大小相同的特征图。将这两个特征图concat到一起得到大小55x55x128的特征图,加上bias参数,这样总参数为 ( 1 × 1 × 96 + 1 ) × 16 + ( 1 × 1 × 16 + 1 ) × 64 + ( 3 × 3 × 16 + 1 ) × 64 = ( 1552 + 1088 + 9280 ) = 11920 (1 \times 1 \times 96+1) \times 16+(1 \times 1 \times 16+1) \times 64+(3 \times 3 \times 16+1) \times 64=(1552+1088+9280)=11920 (1×1×96+1)×16+(1×1×16+1)×64+(3×3×16+1)×64=(1552+1088+9280)=11920

可以看到Fire Module中先通过squeeze层的卷积来降维和降低参数,之后的expand层使用不同尺寸的卷积核来提取特征同时进行升维。这里的卷积核参数较多,远大于卷积的参数,所以作者对3x3卷积又进行了卷积操作和降维操作以减少参数量。从网络整体来看,特征图的尺寸不断减小,通道数不断增加,最后使用平均池化将输出维度转换成完成分类任务。

其他细节
SqueezeNet还有以下的一些细节:

1、为了使和卷积核输出的特征图尺寸相同,在expand模块中,给卷积核3x3的原始输入添加一个像素的边界(zero-padding)。
2、squeeze layer和expand layer都是用ReLU作为激活函数。
3、在fire9模块之后,使用Dropout,比例取50%。
4、注意到SqueezeNet中没有全连接层,这借鉴了Network in Network的思想。
5、训练过程中,初始学习率设置为0.04,,在训练过程中线性衰减学习率。
由于caffe中不支持使用2个不同尺寸的卷积核,所以expand layer实际上是使用了2个单独的卷积层(1x1卷积和3x3卷积核),最后将这两层的输出连接在一起,这在数值上等价于使用单层但包含2个不同尺寸卷积核的方式。

参考自(GaintPandaCV)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值