faster-rcnn.pytorch 学习

本文记录了作者学习Faster R-CNN在PyTorch实现的过程,包括数据集准备、自训练模型、测试及Demo命令。在VOC数据集上进行训练,使用了vgg16和resnet50作为backbone网络。
摘要由CSDN通过智能技术生成

首先感谢两位优秀的博主。

https://blog.csdn.net/The_heart_of_robort/article/details/85224232

https://blog.csdn.net/weixin_43380510/article/details/83004127

记录自己踩过的坑

1)准备工作

数据集 + clone代码

2)很遗憾未能找到已经训练好的模型,所以只能自己动手丰衣足食,好在实验室的硬件条件给力,在voc数据集上进行了训练,训练时长大概15小时。

CUDA_VISIBLE_DEVICES=1 python trainval_net.py --dataset pascal_voc --net vgg16 --bs 1 --nw 4  --cuda --load_dir /home/whut/yyCode/faster-rcnn.pytorch/data/models

CUDA_VISIBLE_DEVICES:gpu的id

-–dataset:数据集,eg:pascal-voc。

-–net:backbone网络,eg:vgg16。

–bs:batch size

–nw:worker number,取决于Gpu能力

-–cuda:使用gpu

每完成一个epoch则会在/home/whut/yyCode/fas

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值