移动平均滤波-python实现

#  读取数据
import pandas as pd
import numpy as np

file_path = 'dst_ess.csv'
df = pd.read_csv(file_path, index_col = False, engine = 'python').dropna()

# n_iter =  508 #10000
n_iter = df['风速'].__len__()
array = np.array(df['风速'][0:n_iter]) # observations (normal about x, sigma=0.1)

################ 移动平均滤波 #############################

class MovingAverageFilter:
	"""Simple moving average filter"""

	@property
	def avg(self):
		"""Returns current moving average value"""
		return self.__avg

	def __init__(self, n = 20, initial_value = 0):
		"""Inits filter with window size n and initial value"""
		self.__n = n
		self.__buffer = [initial_value/n]*n
		self.__avg = initial_value
		self.__p = 0

	def __call__(self, value):
		"""Consumes next input value"""
		self.__avg -= self.__buffer[self.__p]
		self.__buffer[self.__p] = value/self.__n
		self.__avg += self.__buffer[self.__p]
		self.__p = (self.__p  + 1) % self.__n
		return self.__avg


moving_average_filter = MovingAverageFilter(n= 6, initial_value = array[0])

array_dest = []
for num in array:
	moving_average_filter.__call__(num)
	# ret = moving_average_filter.__call__(num)
	ret = moving_average_filter.avg
	array_dest.append ( ret )

#  显示数据
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

plt.figure()
plt.plot(array)
plt.plot(array_dest)
plt.show()

在这里插入图片描述

### 加权滑动平均滤波算法的Python实现 为了实现Python中的加权滑动平均滤波,可以定义一个函数`weighted_moving_average_filter(data, window_size, weights)`。此函数接收三个参数:数据数组`data`、窗口大小`window_size`以及权重数组`weights`[^4]。 下面是一个具体的例子: ```python import numpy as np def weighted_moving_average_filter(data, window_size, weights): """ 对给定的一维数据应用加权移动平均滤波 参数: data (list or array): 输入的数据序列. window_size (int): 滤波器窗口宽度. weights (list or array): 权重向量,其长度等于window_size. 返回: list: 经过处理后的输出信号列表. """ # 初始化输出列表并填充前几个元素保持不变 filtered_data = [] for i in range(len(data)): if i < window_size - 1: # 当索引小于窗宽减一时,直接复制原始值到输出端 avg_val = sum([a*b for a,b in zip(data[:i+1], weights[-(i+1):]) else: # 计算当前点处的加权均值 segment = data[i-(window_size-1):(i+1)] avg_val = sum(segment * weights)/np.sum(weights) filtered_data.append(avg_val) return filtered_data ``` 这段代码首先导入必要的库——NumPy用于数值运算;接着定义了一个名为`weighted_moving_average_filter()` 的函数来执行实际的操作。对于每一个时间步长t,在计算对应的过滤后的新样本时,会依据指定的时间窗口内的历史观测值及其相应的权重来进行加权求和再除以总权重得到最终的结果。特别地,当遍历位置处于初始阶段(即不足整个窗口范围),则只针对已有部分做局部加权平均操作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值