机器学习中Tensorflow的常用函数
tf.one_hot()函数简介
tf.one_hot()函数是将input转化为one-hot类型数据输出,相当于将多个数值联合放在一起作为多个相同类型的向量,可用于表示各自的概率分布,通常用于分类任务中作为最后的FC层的输出。
官网的函数定义
官网默认定义如下:
one_hot(indices, depth, on_value=None,
off_value=None, axis=None, dtype=None, name=None)
参数功能如下:
1)indices中的元素指示on_value的位置,不指示的地方都为off_value。indices可以是向量、矩阵。
2)depth表示输出张量的尺寸,indices中元素默认不超过(depth-1),如果超过,输出为[0,0,···,0]
3)on_value默认为1
4)off_value默认为0
5)dtype默认为tf.float32
举例说明tf.one_hot()函数用法
- indices是向量
import tensorflow as tf
indices = [0,2,3,5]
depth1 = 6 # indices没有元素超过(depth-1)
depth2 = 4 # indices有元素超过(depth-1)
a = tf.one_hot(indices,depth1)
b = tf.one_hot(indices