机器学习中Tensorflow的常用函数之tf.one_hot()函数

本文介绍了TensorFlow中的tf.one_hot()函数,用于将数值转换为one-hot编码,适用于分类任务。函数详细解释了参数功能,包括indices、depth、on_value、off_value和dtype,并通过向量和矩阵的例子展示了其用法。
摘要由CSDN通过智能技术生成

tf.one_hot()函数简介

tf.one_hot()函数是将input转化为one-hot类型数据输出,相当于将多个数值联合放在一起作为多个相同类型的向量,可用于表示各自的概率分布,通常用于分类任务中作为最后的FC层的输出。

官网的函数定义

官网默认定义如下:

one_hot(indices, depth, on_value=None, 
	off_value=None, axis=None, dtype=None, name=None)

参数功能如下:
 1)indices中的元素指示on_value的位置,不指示的地方都为off_value。indices可以是向量、矩阵。
 2)depth表示输出张量的尺寸,indices中元素默认不超过(depth-1),如果超过,输出为[0,0,···,0]
 3)on_value默认为1
 4)off_value默认为0
 5)dtype默认为tf.float32

举例说明tf.one_hot()函数用法

  • indices是向量
import tensorflow as tf

indices = [0,2,3,5]
depth1 = 6   # indices没有元素超过(depth-1)
depth2 = 4   # indices有元素超过(depth-1)
a = tf.one_hot(indices,depth1)
b = tf.one_hot(indices
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值