k—medoids 聚类方法的MATLAB源代码,导入数据部分和画图部分已经用中文给出了注释。

k—medoids 聚类方法的MATLAB源代码,导入数据部分和画图部分已经用中文给出了注释。
这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。

ID:5315652511667870

浪迹天涯


Title: 基于K-medoids聚类方法的MATLAB源代码研究

摘要:聚类是机器学习和数据挖掘领域中常用的技术之一。本文介绍了基于K-medoids聚类方法的MATLAB源代码,并对其中的数据导入和画图部分进行了详细解释。同时,本文引入了一个新的概念——medoid,来代替传统的中心点,以更准确地标识聚类的类别。

  1. 引言
    聚类方法是机器学习和数据挖掘领域的重要研究方向,旨在将相似的数据对象分组成互相之间相似度较高的类别。K-medoids聚类方法是一种常用的聚类算法,其主要思想是通过选择一组代表性的对象(medoids)来表示每个类别,并通过计算对象之间的相似度来进行聚类分析。本文将介绍基于K-medoids聚类方法的MATLAB源代码,并解释其中的数据导入和画图部分。

  2. 数据导入
    在K-medoids聚类方法中,数据的导入是非常关键的步骤。通过将数据导入到MATLAB环境中,我们可以对其进行进一步的处理和分析。在源代码中,数据导入部分已经用中文给出了注释,以方便读者理解。通过指定数据文件路径和读取数据的方法,我们可以将待聚类的数据加载到MATLAB中,并进行后续的处理。

  3. K-medoids聚类算法
    K-medoids聚类算法的核心是选择一组代表性的对象(medoids)来表示每个类别。与传统的聚类方法不同,K-medoids聚类算法通过计算对象之间的相似度来进行聚类分析,而不是直接计算对象与中心之间的距离。在源代码中,我们可以看到通过计算数据对象间的相似度,并根据相似度矩阵来更新medoids的过程。这种基于相似度的聚类方法可以更准确地揭示数据对象的内在关系。

  4. medoid的引入
    为了更准确地标识聚类的类别,本文引入了一个新的概念——medoid。在传统的K-means聚类方法中,中心点被用来代表每个类别,但是中心点并不一定是数据集中的实际对象。通过引入medoid的概念,我们可以选择数据集中的实际对象来代表每个类别,从而更准确地描述聚类结果。在源代码中,我们可以看到通过更新medoids来更新聚类结果的过程,并通过画图部分将聚类结果可视化。

  5. 结论
    本文介绍了基于K-medoids聚类方法的MATLAB源代码,并对其中的数据导入和画图部分进行了详细解释。通过选择一组代表性的对象(medoids)来表示每个类别,K-medoids聚类方法在聚类分析中取得了良好的效果。未来的研究可以进一步优化算法性能,并将其应用于更复杂的实际问题中。

参考文献:
[1] Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: Wiley, 2009.
[2] Matlab Community. K-medoids clustering algorithm implementation in MATLAB. https://www.mathworks.com/matlabcentral/fileexchange/70584-k-medoids-clustering-algorithm-implementation-in-matlab, (Accessed on September 10, 2022).

相关的代码,程序地址如下:http://coupd.cn/652511667870.html

### 回答1: k-medoids聚类算法是一种基于中心点(称为"medoid")的聚类算法。它和k-means算法类似,但是k-medoids使用样本点作为聚类中心,而k-means使用质心(即均值)。 在matlab中,可以使用pam()函数实现k-medoids聚类算法。该函数是由Kaufman和Rousseeuw在1987年提出的Partitioning Around Medoids(PAM)算法的实现。 使用示例如下: [IDX,C,SUMD,K] = pam(X,k) 其中X是待聚类数据矩阵, k是聚类的类别数。 IDX表示每个样本所属的类别, C表示每个类别的中心点。 ### 回答2: k-medoids聚类算法是一种常见的聚类算法,可以在不知道数据分布情况和真实标签的情况下,对数据进行聚类分析,找出其中的潜在分组。与k-means算法相比,k-medoids算法采用与数据点实际值相对应的代表点(称为medoids)作为簇心,而不是通过计算平均值(质心)得出代表点,从而使聚类结果更加稳健。 在Matlab中,可使用Statistics and Machine Learning Toolbox中的kmedoids函数来实现k-medoids聚类。该函数的调用格式为: [idx,medoids,iter] = kmedoids(X,k) 其中,X是大小为n x p的数据矩阵,其中n表示数据点数,p表示特征数;k是指定的簇数。函数返回三个值,idx是大小为n x 1的向量,表示每个数据点所属的簇;medoids是大小为k x p的矩阵,表示每个簇的medoid;iter是迭代次数。 在实际应用中,使用k-medoids算法时需要根据具体数据集选择合适的k值,并进行初始化。通常的做法是多次(如10次)运行k-medoids算法,并从这些运行结果中选择最优的聚类结果,可利用常见的内部聚合度和外部聚合度二者评价聚类效果的方法来指导选择最优聚类结果。无论采取何种评价标准,均需要人工介入,即k值的选择和初始情况的确定等,所以实际应用中需要进行相应的调试和优化。 总之,k-medoids聚类算法是一种常用且有效的聚类算法,能够满足聚类任务中的不同需求。在实际场景中,可根据具体数据集进行参数选择和调优,并结合其他技术手段进行聚类结果评估和应用。 ### 回答3: K-medoids是一种基于距离的聚类算法,与K-means类似,但是它将聚类中心限定为样本点,而不是实际的数据点。这使得K-medoids算法更加鲁棒,因为它不太容易受到离群值的影响。 在Matlab中, 要实现K-medoids算法,首先需要选择K值和距离度量。在选择K值时,可以使用手肘法或轮廓系数来寻找最佳的K值。而在选择距离度量时,常用的有欧式距离和曼哈顿距离。在确定K值和距离度量后,就可以开始K-medoids的实现。 K-medoids算法实现过程: 1. 随机选择K个样本点作为聚类中心; 2. 将每个样本点分配给与其距离最近的聚类中心; 3. 计算每个聚类中心与其它非聚类中心的总距离,并将其中距离最小的样本点作为新的聚类中心; 4. 重复上述步骤,直到聚类中心不再发生变化或达到最大迭代次数。 K-medoids算法的优点: 1. 不需要事先设定簇数量; 2. 更加鲁棒,对离群点不太敏感; 3. 结果可解释性高。 K-medoids算法的缺点: 1. 对于大数据集,时间复杂度较高; 2. 对初始聚类中心的选择较为敏感; 3. 在处理高维数据时,由于维度灾难问题,K-medoids算法效果不如K-means算法。 总的来说,K-medoids聚类算法可以应用于不同领域的数据挖掘和机器学习问题中,如文本聚类、图像分割、生物信息学等。在特定的问题场景下,选择合适的聚类算法很关键,K-medoids算法是一个不错的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值