回归损失函数:L1 Loss,L2 Loss与Smooth L1 Loss的对比

均方误差MSE (L2 Loss)

平均绝对误差(Mean Absolute Error,MAE) 是指模型预测值f(x)和真实值y之间距离的平均值,其公式如下:

MAE = \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - y_i|

忽略下标i ,设n=1,以f(x)−y为横轴,MAE的值为纵轴,得到函数的图形如下:

MAE曲线连续,但是在y−f(x)=0处不可导。而且 MAE 大部分情况下梯度都是相等的,这意味着即使对于小的损失值,其梯度也是大的。这不利于函数的收敛和模型的学习。但是,无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解。

相比于MSE,MAE有个优点就是,对于离群点不那么敏感。因为MAE计算的是误差y−f(x)的绝对值,对于任意大小的差值,其惩罚都是固定的。

针对上面带有离群点的数据,MAE的效果要好于MSE。

显然,使用 MAE 损失函数,受离群点的影响较小,拟合直线能够较好地表征正常数据的分布情况。

均方误差MSE (L2 Loss)

均方误差(Mean Square Error,MSE)是模型预测值f(x) 与真实样本值y 之间差值平方的平均值,其公式如下

MSE = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2

其中,yi和f(xi)分别表示第i个样本的真实值及其对应的预测值,n为样本的个数。

忽略下标i ,设n=1,以f(x)−y为横轴,MSE的值为纵轴,得到函数的图形如下:

MSE的函数曲线光滑、连续,处处可导,便于使用梯度下降算法,是一种常用的损失函数。 而且,随着误差的减小,梯度也在减小,这有利于收敛,即使使用固定的学习速率,也能较快的收敛到最小值。

当y和f(x)也就是真实值和预测值的差值大于1时,会放大误差;而当差值小于1时,则会缩小误差,这是平方运算决定的。MSE对于较大的误差(>1)给予较大的惩罚,较小的误差(<1)给予较小的惩罚。也就是说,对离群点比较敏感,受其影响较大。

如果样本中存在离群点,MSE会给离群点更高的权重,这就会牺牲其他正常点数据的预测效果,最终降低整体的模型性能。 如下图:

可见,使用 MSE 损失函数,受离群点的影响较大,虽然样本中只有 5 个离群点,但是拟合的直线还是比较偏向于离群点。

MSE和MAE的选择

  • 从梯度的求解以及收敛上,MSE是由于MAE的。MSE处处可导,而且梯度值也是动态变化的,能够快速的收敛;而MAE在0点处不可导,且其梯度保持不变。对于很小的损失值其梯度也很大,在深度学习中,就需要使用变化的学习率,在损失值很小时降低学习率。

  • 对离群(异常)值得处理上,MAE要明显好于MSE。

如果离群点(异常值)需要被检测出来,则可以选择MSE作为损失函数;如果离群点只是当做受损的数据处理,则可以选择MAE作为损失函数。

总之,MAE作为损失函数更稳定,并且对离群值不敏感,但是其导数不连续,求解效率低。另外,在深度学习中,收敛较慢。MSE导数求解速度高,但是其对离群值敏感,不过可以将离群值的导数设为0(导数值大于某个阈值)来避免这种情况。

在某些情况下,上述两种损失函数都不能满足需求。例如,若数据中90%的样本对应的目标值为150,剩下10%在0到30之间。那么使用MAE作为损失函数的模型可能会忽视10%的异常点,而对所有样本的预测值都为150。这是因为模型会按中位数来预测。而使用MSE的模型则会给出很多介于0到30的预测值,因为模型会向异常点偏移。

这种情况下,MSE和MAE都是不可取的,简单的办法是对目标变量进行变换,或者使用别的损失函数,例如:Huber,Log-Cosh以及分位数损失等。

Smooth L1 Loss

在Faster R-CNN以及SSD中对边框的回归使用的损失函数都是Smooth L1 作为损失函数

其中,x=f(xi)−yi 为真实值和预测值的差值。

Smooth L1 能从两个方面限制梯度:

  1. 当预测框与 ground truth 差别过大时,梯度值不至于过大;
  2. 当预测框与 ground truth 差别很小时,梯度值足够小。

对比L1 Loss ,L2 Loss以及Smooth L1 Loss

其中xx为预测框与groud truth之间的差异:

上面损失函数对xx的导数为:

上面导数可以看出:

  • 根据公式4,当x增大时,L2的损失也增大。 这就导致在训练初期,预测值与 groud truth 差异过于大时,损失函数对预测值的梯度十分大,训练不稳定。

  • 根据公式5,L1对x的导数为常数,在训练的后期,预测值与ground truth差异很小时,L1的导数的绝对值仍然为1,而 learning rate 如果不变,损失函数将在稳定值附近波动,难以继续收敛以达到更高精度。

  • 根据公式6,Smotth L1Smotth L1在x较小时,对x的梯度也会变小。 而当x较大时,对x的梯度的上限为1,也不会太大以至于破坏网络参数。SmoothL1完美的避开了L1和L2作为损失函数的缺陷。

L1 Loss ,L2 Loss以及SmoothL1 放在一起的函数曲线对比

从上面可以看出,该函数实际上就是一个分段函数,在[-1,1]之间实际上就是L2损失,这样解决了L1的不光滑问题,在[-1,1]区间外,实际上就是L1损失,这样就解决了离群点梯度爆炸的问题

<think>好的,我现在需要回答用户关于L1损失函数的定义、用法实现的问题。首先,用户之前的问题是关于注意力机制的,现在转向了损失函数,特别是L1损失。我需要结合用户提供的引用内容,尤其是引用[2]、[3]、[4]中的信息,来构建回答。 首先,用户提到的引用[2]中提到了Smooth L1 Loss,其中提到当误差大时表现得像L1,误差小时像L2。这可能L1 Loss的特性有关,但用户现在明确询问的是L1 Loss本身。引用[3]提到了Quantile损失函数MAE,而MAE其实就是L1损失函数。引用[4]的表格里详细介绍了各种损失函数,包括L1Loss的应用场景,比如回归任务,对异常值不敏感,适用于有异常值的情况。 接下来,我需要确定L1损失函数的数学定义。根据知识,L1损失是预测值真实值之差的绝对值之的平均,公式应该是:$$ L = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| $$ 这里需要确认引用中的内容是否有补充。引用[4]提到L1Loss用于回归任务,对异常值不那么敏感,这应该在回答中强调。 然后,关于应用场景,用户可能想知道在什么情况下应该使用L1而不是MSE。根据引用[4],当数据含有异常值时,L1通常优于MSE。此外,引用[3]提到MAE倾向于估计中位数,这可能在某些情况下有用,比如需要鲁棒性的时候。 用法方面,需要解释如何在PyTorch中实现L1损失,可能给出代码示例。根据引用[4],PyTorch中的L1Loss对应torch.nn.L1Loss,所以应该提供一个简单的代码片段,展示如何初始化使用该损失函数。 同时,用户提供的引用中有关于Smooth L1 Loss的信息,可能需要对比L1Smooth L1的区别,但用户的问题是直接关于L1的,所以这部分可以作为扩展或比较,但重点应放在L1上。 此外,用户可能想知道L1损失函数的优缺点。根据引用[2][4],优点是对异常值不敏感,缺点是可能在优化时收敛较慢,因为梯度在接近零点处不平滑。 需要确保回答结构清晰,分为定义、应用场景、实现、优缺点等部分,并引用相关的引用来源。例如,在提到对异常值的鲁棒性时,可以引用[2][4]。 最后,生成相关问题,可能需要联系用户之前的注意力机制问题,或者损失函数的其他类型,比如Smooth L1、Quantile损失等,但根据当前问题,相关问题应围绕L1损失展开,如其他损失函数对比,如何选择损失函数,实际应用案例等。 检查是否有遗漏的信息,比如引用[3]中的分位数损失是否L1相关,MAE中位数的关系是否需要进一步解释。确保回答准确,同时参考用户提供的引用内容,但不过度引用不相关的部分。 总结,回答的结构应该是: 1. 定义(公式、解释) 2. 应用场景(回归、异常值处理) 3. 实现方法(PyTorch代码) 4. 优缺点 5. 对比其他损失函数(如MSE) 6. 相关问题 在引用方面,应用场景部分引用[4],对异常值的处理引用[2][4],中位数倾向引用[3]等。确保每个引用只在相关部分提及,并在末尾添加标识。</think># L1损失函数详解 ## 一、数学定义特性 L1损失函数(平均绝对误差,MAE)的数学表达式为: $$ L = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| $$ 其中$y_i$为真实值,$\hat{y}_i$为预测值。该函数具有**对称性****鲁棒性**,对异常值敏感度较低[^2][^4]。 关键特性: 1. 倾向于估计数据的中位数(对比MSE估计均值)[^3] 2. 梯度在原点处不连续,但整体梯度幅度恒定 3. 误差增长速率线性于预测偏差 ## 二、应用场景 | 场景类型 | 具体案例 | 优势体现 | |----------------|----------------------------|------------------------| | 回归任务 | 房价预测、销量预测 | 对异常值不敏感[^4] | | 图像处理 | 图像去噪、超分辨率重建 | 保持边缘锐度 | | 金融预测 | 股价波动预测 | 降低极端事件影响 | | 传感器数据校准 | 工业设备异常检测 | 稳定处理测量噪声 | ## 三、PyTorch实现方法 ```python import torch.nn as nn # 创建损失函数实例 l1_loss = nn.L1Loss(reduction='mean') # reduction可选'max','min','sum' # 计算损失示例 pred = torch.tensor([2.5, 0.8, 5.2]) # 预测值 target = torch.tensor([3.0, 0.5, 4.9]) # 真实值 loss = l1_loss(pred, target) # 输出:0.4 ``` ## 四、MSE的对比分析 $$ \begin{array}{|l|c|c|} \hline \text{特性} & \text{L1 Loss} & \text{MSE} \\ \hline \text{数学形式} & |y-\hat{y}| & (y-\hat{y})^2 \\ \text{梯度特性} & \text{恒定梯度} & \text{梯度随误差增大而增强} \\ \text{异常值敏感度} & \text{低} & \text{高} \\ \text{收敛速度} & \text{较慢} & \text{较快} \\ \text{最优估计} & \text{中位数} & \text{均值} \\ \hline \end{array} $$ ## 五、改进方案 1. **Smooth L1 Loss**:在接近零点区域使用二次函数平滑 $$ L = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{otherwise} \end{cases} $$ 平衡了L1/L2的优点,常用于目标检测(如Faster R-CNN)[^2] 2. **Huber Loss**:引入可调参数δ控制平滑范围 $$ L_\delta = \begin{cases} \frac{1}{2}x^2 & \text{for } |x| \leq \delta \\ \delta|x| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases} $$ ## 六、最佳实践建议 1. **数据预处理**:建议对输入数据进行标准化(Z-score) 2. **优化器选择**:搭配自适应优化器(如Adam)可改善收敛性 3. **学习率设置**:初始学习率建议设为MSE场景的1/10 4. **监控指标**:建议同时计算MAEMSE评估模型表现 --相关问题-- 1. 如何选择L1 LossHuber Loss的超参数? 2. 在图像重建任务中,L1 Loss相比MSE有什么视觉优势? 3. 为什么L1正则化能产生稀疏解? 4. 如何实现带权重的L1 Loss函数? [^2]: 当预测值真实值之间的差异很大时,Smooth L1 Loss表现得像L1 Loss,这减少了对大误差的惩罚 [^3]: MAE函数实际上会倾向于预估样本中位数 [^4]: L1Loss对异常值不那么敏感,当数据含有异常值时通常优于MSE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值