一文理清L1 loss、L2 loss、smooth L1 loss原理与区别


L1 loss

L1 loss常用别称:

  • L1范数损失
  • 最小绝对偏差(LAD)
  • 平均绝对值误差(MAE)
    在这里插入图片描述
    其中,yi是真实值,f(xi)是预测值,n是样本点个数

优缺点?

  • 优点:无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解
  • 缺点:在中心点是折点,不能求导,梯度下降时要是恰好学习到w=0就没法接着进行了

什么时候使用?

  1. 回归任务
  2. 简单模型
  3. 神经网络通常比较复杂,直接使用L1 loss作为损失函数的非常少

L2 loss

L2 loss常用别称:

  • L2范数损失
  • 最小均方误差(LSE)
  • 均方误差(MSE)
    在这里插入图片描述
    其中,yi是真实值,f(xi)是预测值࿰
Yolov5 是种广泛应用于目标检测的算法,其 loss 原理相对简单。Yolov5 通过将目标检测问题转化为个回归问题,通过预测 bounding box 的坐标来实现目标检测。 Yolov5 的 loss 主要包括三个部分:分类损失、定位损失目标置信度损失。 分类损失是用来衡量预测的类别真实类别之间的差异。Yolov5 使用交叉熵损失函数来计算分类损失。对于每个边界框(bounding box),它将计算预测类别的 softmax 概率真实类别的 one-hot 向量之间的交叉熵。 定位损失用于衡量预测的边界框位置真实边界框位置之间的差异。Yolov5 使用 Smooth L1 损失函数来计算定位损失。它通过对预测边界框的坐标真实边界框的坐标之间进行平滑处理,减小了异常值的影响。 目标置信度损失用于衡量预测的边界框真实边界框之间的 IoU(Intersection over Union)之间的差异。Yolov5 使用 Binary Cross-Entropy 损失函数来计算目标置信度损失。它将预测的边界框是否包含目标真实边界框是否包含目标之间的差异进行衡量。 最终,Yolov5 的总损失是通过将三个部分的损失加权求得到的。这些权重可以根据具体的任务数据集进行调整。 通过最小化 Yolov5 的 loss 函数,模型可以学习到更准确的目标检测结果。这样,我们就可以在图像中准确地检测定位不同类别的目标。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值