一文理清L1 loss、L2 loss、smooth L1 loss原理与区别


L1 loss

L1 loss常用别称:

  • L1范数损失
  • 最小绝对偏差(LAD)
  • 平均绝对值误差(MAE)
    在这里插入图片描述
    其中,yi是真实值,f(xi)是预测值,n是样本点个数

优缺点?

  • 优点:无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解
  • 缺点:在中心点是折点,不能求导,梯度下降时要是恰好学习到w=0就没法接着进行了

什么时候使用?

  1. 回归任务
  2. 简单模型
  3. 神经网络通常比较复杂,直接使用L1 loss作为损失函数的非常少

L2 loss

L2 loss常用别称:

  • L2范数损失
  • 最小均方误差(LSE)
  • 均方误差(MSE)
    在这里插入图片描述
    其中,yi是真实值,f(xi)是预测值࿰
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值