前言:最近有同学问我他要使用随机森林比较影响因素的空间差异(加入空间位置这一因素)该怎么去做。这肯定是使用空间随机森林模型来做喽,那么什么是空间随机森林模型呢?空间随机森林模型是结合了空间信息的随机森林模型,用于分析和预测具有空间依赖性的地理数据。它不仅考虑传统随机森林模型中的特征变量,还考虑空间位置的影响。以下是构建空间随机森林的步骤以及流程。
准备阶段:
1、数据准备:多个热点数据(包含空间位置(经纬度)和目标变量)与多个协助变量(包含空间位置和协变量值)。
2、合并数据:将热点数据和协助变量按地理位置进行合并,确保每个位置的所有变量都在同一个数据框中。
3、计算数据点之间的空间距离矩阵,作为额外的特征引入模型。
构建模型:
1、我们需要对多个热点数据分别进行分析,随后我们定义特征和目标变量
X = hotspot_data[['covariate1', 'covariate2', 'covariate3', 'covariate4', 'covariate5']]
y = hotspot_data['target_variable']
2、构建随机森林模型与评估模型
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X, y)
y_pred = rf.predict(X_test)
mse = np.mean((y_pred - y_test) ** 2)
3、特征重要性分析,识别对目标变量影响最大的空间特征和协变量,我们选择SHAP方法。SHAP(SHapley Additive exPlanations)分析是一种解释机器学习模型预测结果的方法,基于 Shapley 值的概念,来自合作博弈论。它可以为每个特征分配一个贡献值,解释每个特征对模型预测的影响。SHAP 值不仅能告诉我们一个特征的重要性,还能告诉我们该特征是正向影响(推动预测结果增加)还是负向影响(推动预测结果减少)。
explainer = shap.Explainer(rf, X_train)
shap_values = explainer(X_test)
4、分析之后,我们进行比较特征重要性与结果出图
# 绘制SHAP summary图
shap.summary_plot(shap_values, X_test)
# 特征重要性(使用SHAP值)
shap.summary_plot(shap_values, X_test, plot_type="bar")