屈曲模态和振动模态区别

特征值屈曲:[K+λK(r)]*U=0

其中

K:结构材料刚度矩阵

K(r):输入荷载下的结构几何刚度矩阵

λ:屈曲因子

U:和每一个λ对应的特征向量矩阵,也就是屈曲模态

模态分析:

其实就是求一个无阻尼自由振动结构的周期和振型。

其中无阻尼自由振动方程为:Mx''+Kx=0

这个方程的周期振型就是一也特征值方程(特征向量法):[K-(ω^2)M]*U=0

其中

K:结构材料刚度矩阵

M:结构质量矩阵

ω:结构频率

U:每个结构频率对应的振型向量

关于屈曲,

屈曲其实就是结构在材料未达到其极限强度就无法继续提供承载能力,可以理解为在那个时刻,结构强度还有富余,但是刚度已经没有,是需要很小的扰动,其变形就会迅速增大,最后结构已经不能完成预期的目标。引用sap2000说明书上的一段话:屈曲也是稳定,其可以分为两类,一,分岔失稳,这是一种理想的情况,即达到某种荷载时除结构原来的平衡状态存在外,还可能出现第二个平和状态,在数学上是一个求特征值问题,也叫特征值屈曲,这类结构失稳的荷载也叫屈曲荷载。二,极值失稳,结构到失稳状态时,变形将迅速增大,这里面也包含所谓的跳跃失稳,(跳跃失稳可以想象你按压易拉罐的罐壁,其会在凹下去后达到新的平衡位置,但是由于这样的失稳,其位移跳跃太大,往往也就归结于破坏)。我们这里说的是第一类失稳!

结构发生屈曲并不一定会破坏,有时还是能够继续承受更大的载荷的。
  比如大型飞机的机翼,多是骨架-蒙皮结构,在外压作用下,通常是局部的蒙皮先发生屈曲 - 由凸起变为下凹,但是并不因为着机翼破坏,整个机翼仍然能够承受更大的载荷。再如薄壁结构,有时会在局部发生屈曲,但是整体仍能承受更大的载荷等。
  对这种情况,需要多算几阶屈曲模态,一是判断是局部屈曲还是整体屈曲,以便对容易发生局部屈曲的部位采取措施;二是判断整体的承载能力。

如果是个别或少量飞主要构件发生屈曲,而整体结构可以继续承载,则属于局部屈曲;而如果是主要构件发生屈曲,导致整个结构损坏,不能继续承载,则属于整体屈曲。

模态分析就不介绍了,大家可以百度!

先从计算公式来看看它们的区别:

两个的相同点:

1.都是求特征值问题

2.这个方程都有多解,也就是都有所谓的阶数之分

不同点:

模态分析和结构的质量有关,和外荷载无关,其形状曲线是一个位移比例关系。屈曲分析与外荷载有关和质量无关,其形状曲线是真实荷载下的移位。

总结:一个是特性,一个状态。

下面一段话转自网络:

不论是特征值向量法还是RITZ向量法都是为求解我们之前提到的动力平衡微分方程服务的,他们的主要作用是解耦动力微分方程。 属于对耦合线性结构的模态方程进行解藕的两种方法

       所谓解耦是指使含有多个变量的数学方程变成能够用单个变量表示的方程组,即变量不再同时共同直接影响一个方程的结果,从而简化分析计算。通过适当的控制量的选取,坐标变换等手段将一个多变量系统化为多个独立的单变量系统的数学模型,即解除各个变量之间的耦合。

       特征值向量法是通过求解特征值方程,将无阻尼结构体系分解为若干阵型,即将多质点结构体系各个质点原本耦合的运动性质解耦,分解为结构的各个阵型的形式,而后将这些阵型向量进行组合即可获得各种运动形态。这一点很想傅里叶变换的作用,把原本复杂的函数分解成为简单三角函数的线性组合。解耦后动力方程求解可以针对每一种阵型进行,然后按照概率论原理进行叠加,获得最大地震反应。这就是振型分解反应谱法的基本原理。

ritz向量法,又称为LDR法。这种方法进行考虑了动力荷载的空间分布。它动力方程右侧的外荷载改写为一个空间静力荷载向量乘以一个时程函数,又将这个时程函数进行傅里叶变换,成为基本的三角函数的线性组合,以此简化动力方程的求解。

特征值向量法存在一个缺点就是不能考虑与荷载相关的阵型。这样就造成对于某些大型的结构体系,很多求解出来的阵型与荷载正交或者不参与动力响应,导致反应谱分析时质量参与系数不足的现象。LDR方法可以弥补这一缺陷。

屈曲模态分低阶模态和高阶模态:

数学含义说白了,临界屈曲荷载值是结构刚度矩阵的特征值,实际上是刚度的线性计算结果,有这样的矩阵我就能算出高阶屈曲模态和临界值。

对于一根杆屈曲模态比较简单就是和半波数量有关,但是对于大型结构,不同的前几阶屈曲临界荷载很可能非常接近(局部屈曲OR整体屈曲),而本身结构在屈曲的过程因为产生极大的变形呈现出强烈的几何非线性,屈曲实际发生的过程甚至会出现多阶屈曲模态的耦连,最终屈曲模态和特征值很可能和最低阶屈曲荷载与模态大相径庭,《空间网格结构技术规程》中规定要进行全过程分析,就是因为考虑到结构大变形时候非线性的影响,第一阶屈曲模态不一定能代表结构实际的屈曲方式。单纯直说楼主这种分析得到的屈曲的话,其实主要属于分枝点屈曲。在进行计算的时候利用能量法通过求解变分来求解所有可能的变形模态。通俗的来讲一根压杆在受压的时候可能发生无数种变形形式,就像平行宇宙或者薛定谔的猫一样,然而事实上不管是理想的直杆还是存在缺陷的真实杆只发生了一种形式的破坏。为什么呢。因为杆件失稳总是按照消耗能量最小的形式发生变形。消耗能量最小不好理解的话,可以认为是最容易失稳的情况,就是各种抵抗因素最小的变形形式,这个通常对应着我们分析得到的第一阶模态,这届模态对应的能量是最小的,这个能量又是和轴力相关的,就是说在轴力作用下一开始轴向变形是OK的,各种边界条件的约束使得这个时候轴向变形最容易,然后轴力增大到第一阶模态的特征值了,也就是达到了第一阶屈曲荷载,从这开始按照半波弯曲消耗的能量更小,那我们说在真实情况下就很有可能按照这个半波发生变化(为什么说很有可能呢我们之后再解释),这也就是所谓线性屈曲分析的大概逻辑,之后的高阶模态对应的是更高的荷载和更复杂的变形形式,但是既然我们认为第一阶已经失稳了就不会存在构件一直保持径向变形直至达到高阶荷载的情况了,所以看似就没有什么用了,但是。。。。如果我们就非让他再第二阶荷载前一直保持轴向变形呢,也是可以的,比如在半波的中建设置一个支撑,第二阶变形形式由不会受到这个支撑的影响,第二阶分析就有意义了,当然如果你重新对存在跨中支撑的压杆进行分析,这是你会发现第一阶刚好就是之前的第二阶。

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
振动分析是一种用来研究结构在振动中的特性的分析方法。它通过求解结构的固有振动频率、振动振动阻尼等参数,来研究结构的振动特性和工作状下的响应。 振动分析的基本思想是将结构的振动问题转化为一种振动微分方程,然后通过数值或解析方法求解该方程的特征频率和。其中,特征频率代表了结构振动的固有特性,而则描述了结构振动时各部分的相对运动。 振动分析在工程领域有着广泛的应用。首先,它可以用于评估结构的振动特性,如自振频率和振动。这对于设计抗震、减振和隔振结构至关重要。其次,振动分析还可用于研究结构在工作状下的振动响应,如自然频率和振型对结构的动响应影响。这对于分析和优化结构在实际工况下的振动特性具有重要意义。 振动分析的方法有很多,其中PDF(Probability Density Function)方法是一种常用的统计工具,用于分析随机振动的特性。通过分析振动信号的统计分布情况,可以得到结构的某些重要振动参数,如振动峰值、振动谱密度等。这对于分析结构的振动稳定性和抗震性能具有重要意义。 综上所述,振动分析是一种用来研究结构振动特性和响应的分析方法,通过求解振动微分方程的特征频率和,可以评估结构的振动特性和响应。PDF方法是其中的一种重要工具,用于分析随机振动特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值