DeepSeek 企业级应用调研与实施指南
一、DeepSeek 概述
1.1 技术背景
DeepSeek 是由中国团队研发的开源大语言模型(LLM)系列,涵盖混合专家模型(MoE)架构与高效推理技术。其代表性模型 DeepSeek-V3(671B 参数)和 DeepSeek-R1(轻量级至千亿级)通过创新的架构设计(如多头潜在注意力 MLA 和 DeepSeekMoE)实现了与闭源模型(如 GPT-4o)相媲美的性能,同时在训练成本上显著降低(总训练成本仅 557.6 万美元)。
1.2 核心优势
- 高性能:在数学推理(MATH-500)、编程(LiveCodeBench)及中文知识(Chinese SimpleQA)任务中表现领先。
- 经济性:采用 FP8 混合精度训练和 DualPipe 算法,降低 60% 的显存占用,推理吞吐量提升 1.8 倍。
- 本地化部署:支持通过 Ollama 等工具快速本地部署,适应隐私敏感场景。
二、模型下载与部署方案
2.1 模型获取
-
开源社区