新手村:异常值检测-Z-score与IQR方法


新手村:异常值检测-Z-score与IQR方法

(聚焦Z-score与IQR方法)
在这里插入图片描述


一、前置条件

知识领域 要求
编程基础 Python基础(变量、循环、函数)、Jupyter Notebook或PyCharm使用。
统计学基础 理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。
数据预处理 数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。

二、渐进式学习计划

阶段 学习目标 核心内容 时间分配 难度评分(1-5)
1. 统计基础 掌握均值、中位数、标准差、四分位数等统计量计算。 数据分布中心与离散程度的度量。 2小时 1.0
2. Z-score方法 理解Z-score定义及其在异常检测中的应用。 Z-score公式、正态分布假设、阈值选择(如±3σ)。 3小时 2.0
3. IQR方法 掌握IQR的计算及箱线图可视化。 四分位数、IQR定义、上下界计算、非正态分布适用性。 3小时 2.0
4. 实战对比 对比Z-score与IQR在不同数据集中的表现。 数据分布类型选择方法、可视化结果分析。 4小时 3.0
5. 缺失值处理 学习异常值处理策略(删除、填充、转换)。 根据业务场景选择处理方式,避免数据偏差。 2小时 2.5

掌握均值、中位数、标准差、四分位数等统计量计算。

一、Z-score方法详解

核心知识点
知识点 理论表达 通俗解释 重要性评分(1-5)
Z-score公式 Z = X − μ σ Z = \frac{X - \mu}{\sigma} Z=σXμ
X X X:数据点; μ \mu μ:均值; σ \sigma σ:标准差。
数据点距离均值有多少个标准差。Z值越大,数据点越异常。 5
正态分布假设 Z-score方法假设数据服从正态分布(钟形曲线)在这里插入图片描述 若数据分布偏斜或非正态,Z-score可能误判异常值。 5
阈值选择 常用阈值为±3σ(对应Z值±3),即99.7%数据在均值±3σ范围内。 超过阈值的点被标记为异常值。例如,Z=3.33的点会被视为异常。 5
计算步骤
  1. 计算均值(μ)和标准差(σ)

    mu = np.mean(data)
    sigma = np.std(data)
    
  2. 计算每个数据点的Z-score

    z_scores = (data - mu) / sigma
    
  3. 设定阈值并筛选异常值

    threshold = 3
    outliers = data[abs(z_scores) > threshold]
    
示例

它绘制数据的直方图和理论上对应的正态分布曲线,并在图中标记出异常值

data = [100, 105, 110, 150, 95, 200, 80, 300, 120, 130]

代码演示
import numpy as np
import matplotlib.pyplot as plt

# 销售数据
data = [100, 105, 110, 150, 95, 200, 80, 300, 120, 130]

# 计算均值和标准差
mean = np.mean(data)
std_dev = np.std(data)

# 计算Z-score
z_scores = [(x - mean) / std_dev for x in data]

# 定义阈值
threshold = 2

# 标记异常值
outliers = [x for i, x in enumerate(data) if abs(z_scores[i]) > threshold * std_dev]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘉羽很烦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值