【PINN物理信息网络】基于能量的先验改进物理信息神经网络的训练(电阻抗断层扫描)(python)
运行结果
文章介绍
基于能量的先验改进物理信息神经网络(Energy-Based Prior Enhanced Physics-Informed Neural Network,EBP-PINN)是一种用于物理问题求解的深度学习方法。它结合了物理信息和观测数据,通过优化神经网络的参数来近似求解物理方程。
电阻抗断层扫描(Electrical Impedance Tomography,EIT)是一种用于成像和监测材料或生物体内部电阻抗分布的非侵入式成像技术。它基于测量电极对之间的电压和电流,利用电阻抗成像算法重构目标区域的电阻抗分布。
EBP-PINN可以应用于电阻抗断层扫描问题,以提高重构图像的准确性和稳定性。它结合了电阻抗断层扫描的物理模型和观测数据,通过神经网络学习来近似求解电阻抗分布。
基本步骤
该方法可以通过以下步骤进行训练: