【PINN物理信息网络】基于能量的先验改进物理信息神经网络的训练(电阻抗断层扫描)(python)

本文介绍了如何使用能量先验改进的物理信息神经网络(EBP-PINN)来解决电阻抗断层扫描(EIT)问题。EBP-PINN结合物理模型和观测数据,通过神经网络训练提高重构图像的准确性和稳定性。基本步骤包括物理模型建立、数据准备、神经网络设计、损失函数定义和训练网络。代码分享和参考资料供进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【PINN物理信息网络】基于能量的先验改进物理信息神经网络的训练(电阻抗断层扫描)(python)

运行结果

1

文章介绍

基于能量的先验改进物理信息神经网络(Energy-Based Prior Enhanced Physics-Informed Neural Network,EBP-PINN)是一种用于物理问题求解的深度学习方法。它结合了物理信息和观测数据,通过优化神经网络的参数来近似求解物理方程。

电阻抗断层扫描(Electrical Impedance Tomography,EIT)是一种用于成像和监测材料或生物体内部电阻抗分布的非侵入式成像技术。它基于测量电极对之间的电压和电流,利用电阻抗成像算法重构目标区域的电阻抗分布。

EBP-PINN可以应用于电阻抗断层扫描问题,以提高重构图像的准确性和稳定性。它结合了电阻抗断层扫描的物理模型和观测数据,通过神经网络学习来近似求解电阻抗分布。

基本步骤

该方法可以通过以下步骤进行训练:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值