【Matlab股票价格预测】基于WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积双向长短期记忆神经网络注意力机制多变量股票价格预测

41 篇文章 56 订阅 ¥39.90 ¥99.00
该博客介绍了基于WOA优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)与注意力机制在Matlab中预测股票价格的方法。通过结合多变量数据、CNN特征提取、BiLSTM长期依赖捕获、注意力机制的焦点调整和WOA优化,提高了预测模型的准确性。
摘要由CSDN通过智能技术生成

【Matlab股票价格预测】基于WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积双向长短期记忆神经网络注意力机制多变量股票价格预测

文章介绍

基于WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积双向长短期记忆神经网络注意力机制多变量股票价格预测的思想是将多种技术和算法结合在一起,以提高股票价格预测的准确性。下面是该方法的思想概述:

  1. 多变量数据:使用多个相关变量来预测股票价格,如股票的历史价格数据、市场指数、交易量、财务数据等。这些变量可以提供更全面的信息,有助于提高预测模型的准确性。
  2. 卷积神经网络(CNN):CNN是一种能够有效提取时间序列数据中的特征的神经网络模型。通过卷积层和池化层的组合,CNN可以自动学习数据中的局部模式和特征,并提取有用的信息。
  3. 双向长短期记忆神经网络(BiLSTM):BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉时间序列数据中的长期依赖关系。通过正向和反向两个方向的LSTM层,BiLSTM可以提取时间序列的前后上下文信息,更好地理解序列中的内在模式。
  4. 注意力机制(Attention):注意力机制可以帮助模型聚焦于关键的时
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值