【Matlab股票价格预测】基于WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积双向长短期记忆神经网络注意力机制多变量股票价格预测
文章目录
文章介绍
基于WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积双向长短期记忆神经网络注意力机制多变量股票价格预测的思想是将多种技术和算法结合在一起,以提高股票价格预测的准确性。下面是该方法的思想概述:
- 多变量数据:使用多个相关变量来预测股票价格,如股票的历史价格数据、市场指数、交易量、财务数据等。这些变量可以提供更全面的信息,有助于提高预测模型的准确性。
- 卷积神经网络(CNN):CNN是一种能够有效提取时间序列数据中的特征的神经网络模型。通过卷积层和池化层的组合,CNN可以自动学习数据中的局部模式和特征,并提取有用的信息。
- 双向长短期记忆神经网络(BiLSTM):BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉时间序列数据中的长期依赖关系。通过正向和反向两个方向的LSTM层,BiLSTM可以提取时间序列的前后上下文信息,更好地理解序列中的内在模式。
- 注意力机制(Attention):注意力机制可以帮助模型聚焦于关键的时