基于鲸鱼算法优化卷积双向长短期记忆神经网络WOA-CNN-BiLSTM实现股价序列预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

在金融市场中,股价的预测一直是投资者和交易者们关注的焦点。准确地预测股价的变动可以帮助投资者做出明智的决策,从而获得更高的回报。近年来,随着深度学习的快速发展,人工智能技术在股价预测中的应用逐渐受到关注。

在深度学习领域,卷积神经网络(CNN)和长短期记忆神经网络(LSTM)是两种常用的模型。CNN在图像处理中表现出色,而LSTM则擅长处理序列数据。然而,单独使用这两个模型对股价进行预测可能存在一些限制。为了克服这些限制,研究人员提出了一种结合了CNN和LSTM的模型,即卷积双向长短期记忆神经网络(CNN-LSTM)。

尽管CNN-LSTM模型在股价预测中取得了一定的成功,但是其性能仍然有待进一步提升。为了解决这个问题,研究人员提出了一种基于鲸鱼算法(Whale Optimization Algorithm,WOA)优化CNN-LSTM模型的方法。鲸鱼算法是一种基于自然界鲸鱼行为的优化算法,其通过模拟鲸鱼的迁徙、繁殖和觅食行为来搜索最优解。

在使用WOA优化CNN-LSTM模型进行股价预测时,首先需要对股价序列进行预处理。常见的预处理方法包括归一化、平滑和降噪等。接下来,将预处理后的序列输入到CNN-LSTM模型中进行训练。然而,由于CNN-LSTM模型的参数较多,传统的优化方法可能会陷入局部最优解。因此,使用WOA算法来优化模型的参数可以提高模型的性能。

在使用WOA-CNN-LSTM模型进行股价预测时,需要注意一些关键因素。首先,选择合适的模型超参数是非常重要的,例如卷积核大小、LSTM单元数量和学习率等。其次,合理划分训练集和测试集,并进行交叉验证,可以有效评估模型的性能。最后,要注意模型的过拟合问题,可以通过添加正则化项或提前停止训练来解决。

通过实验和实际应用的验证,使用WOA-CNN-LSTM模型进行股价预测可以取得较好的效果。该模型不仅考虑了CNN和LSTM的优势,还通过WOA算法优化参数,提高了模型的性能。然而,需要注意的是,股价预测是一个复杂的问题,受到多种因素的影响,因此模型的预测结果可能存在一定的误差。

总之,基于鲸鱼算法优化卷积双向长短期记忆神经网络WOA-CNN-LSTM的股价预测模型在金融市场中具有一定的应用前景。随着深度学习和人工智能技术的不断发展,相信这种模型将在未来得到更广泛的应用,并为投资者提供更准确的股价预测信息。

⛄ 部分代码

function [Leader_pos,Convergence_curve,process]=WOA(SearchAgents_no,Max_iter,dim,lb,ub,fboj)%% 初始化Leader_pos=zeros(1,dim);Leader_score=inf;for i=1:SearchAgents_no%随机初始化速度,随机初始化位置    for j=1:dim        if j==dim%除了学习率 其他的都是整数            Positions( i, j ) = (ub(j)-lb(j))*rand+lb(j);        else            Positions( i, j ) = round((ub(j)-lb(j))*rand+lb(j));        end    endendConvergence_curve=zeros(1,Max_iter);%% 主循环for t=1:Max_iter    a=2-t*((2)/Max_iter);    a2=-1+t*((-1)/Max_iter);    lambda=3;    mu=2;    adapative_p= 1-(1/(lambda+mu)*(lambda*t^lambda+mu*mu^lambda)/(Max_iter^lambda));    for i=1:size(Positions,1)        r1=rand();        r2=rand();        A=2*a*r1-a;        C=2*r2;        b=1;        l=(a2-1)*rand+1;        p = rand();        for j=1:size(Positions,2)            if p<0.5                if abs(A)>=1                    rand_leader_index = floor(SearchAgents_no*rand()+1);                    X_rand = Positions(rand_leader_index, :);                    D_X_rand=abs(C*X_rand(j)-Positions(i,j));                    Positions(i,j)=X_rand(j)-A*D_X_rand;                elseif abs(A)<1                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j));                    Positions(i,j)=Leader_pos(j)-A*D_Leader;                end            elseif p>=0.5                distance2Leader=abs(Leader_pos(j)-Positions(i,j));                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);            end        end         Positions(i, : ) = Bounds( Positions(i, : ), lb, ub );%对超过边界的变量进行去除        fit=fboj(Positions(i,:));        %  更新        if fit<Leader_score            Leader_score=fit;            Leader_pos=Positions(i,:);        end    end    Convergence_curve(t)=Leader_score;    process(t,:)=Leader_pos;    disp(['第',num2str(t),'代,RMSE=',num2str(Leader_score)])%     t,Leader_score,Leader_posend

⛄ 运行结果

⛄ 参考文献

[1]郝可青吕志刚邸若海朱鸿杰.基于鲸鱼算法优化长短时记忆神经网络的锂电池剩余寿命预测[J].科学技术与工程, 2022, 22(29):12900-12908.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值