ssd caffe PriorBox参数计算box 个数

参考:

https://arleyzhang.github.io/articles/786f1ca3/

https://blog.csdn.net/wfei101/article/details/79477762

https://blog.csdn.net/Dlyldxwl/article/details/80070693

 

                                        Fig.2 default boxes

作者的实验表明default box的shape数量越多,效果越好。

这里用到的 default box 和Faster RCNN中的 anchor 很像,在Faster RCNN中 anchor 只用在最后一个卷积层,但是在本文中,default box 是应用在多个不同层的feature map上。

那么default box的scale(大小)和aspect ratio(横纵比)要怎么定呢?假设我们用m个feature maps做预测,那么对于每个featuer map而言其default box的scale是按以下公式计算的: 

 ∨∨

Sk=Smin+Smax−Sminm−1(k−1),k∈[1,m]Sk=Smin+Smax−Sminm−1(k−1),k∈[1,m]

这里smin是0.2,表示最底层的scale是0.2;smax是0.9,表示最高层的scale是0.9。

至于aspect ratio,用arar表示为下式:注意这里一共有5种aspect ratio 

ar={1,2,3,1/2,1/3}ar={1,2,3,1/2,1/3}

因此每个default box的宽的计算公式为: 

wak=skar‾‾√wka=skar

高的计算公式为:(很容易理解宽和高的乘积是scale的平方) 

hak=sk/ar‾‾√hka=sk/ar

另外当aspect ratio为1时,作者还增加一种scale的default box: 

s′k=sksk+1‾‾‾‾‾‾√sk′=sksk+1

因此,对于每个feature map cell而言,一共有6种default box。 

可以看出这种default box在不同的feature层有不同的scale,在同一个feature层又有不同的aspect ratio,因此基本上可以覆盖输入图像中的各种形状和大小的object!

看代码

for (int h = 0; h < layer_height; ++h) {
    for (int w = 0; w < layer_width; ++w) {
      float center_x = (w + offset_) * step_w;
      float center_y = (h + offset_) * step_h;
      float box_width, box_height;
      for (int s = 0; s < min_sizes_.size(); ++s) {
        int min_size_ = min_sizes_[s];
        // first prior: aspect_ratio = 1, size = min_size
        box_width = box_height = min_size_;
        // xmin
        top_data[idx++] = (center_x - box_width / 2.) / img_width;
        // ymin
        top_data[idx++] = (center_y - box_height / 2.) / img_height;
        // xmax
        top_data[idx++] = (center_x + box_width / 2.) / img_width;
        // ymax
        top_data[idx++] = (center_y + box_height / 2.) / img_height;

        if (max_sizes_.size() > 0) {
          CHECK_EQ(min_sizes_.size(), max_sizes_.size());
          int max_size_ = max_sizes_[s];
          // second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
          box_width = box_height = sqrt(min_size_ * max_size_);
          // xmin
          top_data[idx++] = (center_x - box_width / 2.) / img_width;
          // ymin
          top_data[idx++] = (center_y - box_height / 2.) / img_height;
          // xmax
          top_data[idx++] = (center_x + box_width / 2.) / img_width;
          // ymax
          top_data[idx++] = (center_y + box_height / 2.) / img_height;
        }

        // rest of priors
        for (int r = 0; r < aspect_ratios_.size(); ++r) {
          float ar = aspect_ratios_[r];
          if (fabs(ar - 1.) < 1e-6) {
            continue;
          }
          box_width = min_size_ * sqrt(ar);
          box_height = min_size_ / sqrt(ar);
          // xmin
          top_data[idx++] = (center_x - box_width / 2.) / img_width;
          // ymin
          top_data[idx++] = (center_y - box_height / 2.) / img_height;
          // xmax
          top_data[idx++] = (center_x + box_width / 2.) / img_width;
          // ymax
          top_data[idx++] = (center_y + box_height / 2.) / img_height;
        }
      }
    }
  }

看一下caffe中设置的参数

layer {
  name: "fc7_mbox_priorbox"
  type: "PriorBox"
  bottom: "fc7"
  bottom: "data"
  top: "fc7_mbox_priorbox"
  prior_box_param {
    min_size: 60.0
    max_size: 111.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 16
    offset: 0.5
  }

 

具体到每一个feature map上获得prior box时,会从这6种中进行选择。如下表和图所示最后会得到(38*38*4 + 19*19*6 + 10*10*6 + 5*5*6 + 3*3*4 + 1*1*4)= 8732个prior box。

feature mapfeature map sizemin_size(sksk)max_size(sk+1sk+1)aspect_ratio   step     offset      variance      
conv4_338×3830601,280.50

0.1, 0.1,

0.2, 0.2

fc619×19601111,2,316
conv6_210×101111621,2,332
conv7_25×51622131,2,364
conv8_23×32132641,2100
conv9_21×12643151,2300

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值