与其在不同厂商的API文档里反复横跳,不如用LiteLLM统一调用所有大语言模型!
1、项目介绍
LiteLLM 是由BerriAI团队开发的开源神器,它通过标准化OpenAI格式的API接口,让开发者可以无缝调用包括OpenAI、Azure、Anthropic、Hugging Face等在内的100+主流大语言模型。无论是企业级AI应用开发,还是个人AI工具搭建,这个项目都能让你摆脱"API接口地狱",真正实现"一次开发,全平台通用"。
2、核心功能亮点
一网打尽主流模型
- 支持列表覆盖行业标杆:从OpenAI的GPT-4到Anthropic的Claude3,从Hugging Face的开源模型到阿里云灵积,甚至支持私有化部署的本地模型
- 调用方式完全统一:所有模型只需
completion()
函数即可调用,响应格式标准化为response.choices[0].message.content
# 调用GPT-4与Claude3完全一致的写法
from litellm import completion
gpt_response = completion(model="openai/gpt-4", messages=[{"role":"user","content":"你好!"}])
claude_response = completion(model="anthropic/claude-3-sonnet", messages=messages)
企业级智能路由
- 故障自动转移:当Azure服务异常时自动切换至AWS Bedrock,保障服务连续性
- 流量智能分配:根据预算自动分配请求到不同价位的模型,成本直降40%
- 实时成本监控:通过代理服务器追踪每个API密钥的token消耗,杜绝预算超支
开发者友好设计
- 异步流式响应:处理万字长文生成时,文字逐词返回不卡顿
- 环境变量管理:支持通过
.env
文件集中管理所有平台密钥 - 版本强兼容:完美适配OpenAI SDK v1.0+与Pydantic v2.0+
3、技术架构解析
架构层级 | 关键技术 |
---|---|
接口层 | OpenAI标准化API设计,Python语言实现 |
路由层 | 智能负载均衡算法,支持多平台故障转移 |
管理层 | 基于PostgreSQL的密钥管理系统,支持动态密钥生成和权限控制 |
监控层 | Prometheus+Grafana监控体系,提供API延迟、成功率等23项核心指标 |
扩展层 | 开放式插件架构,每月新增5-10个模型平台支持 |
4、五大应用场景
企业级AI中台搭建
通过LiteLLM Proxy
实现:
- 统一鉴权:对接企业AD域账号体系
- 流量管控:按部门设置QPS限制
- 合规审计:满足GDPR/HIPAA要求
多模型对比测试
models = ["openai/gpt-4", "anthropic/claude-3", "huggingface/llama3"]
for model in models:
start = time.time()
response = completion(model=model, messages=test_prompt)
print(f"{model} 响应时间:{time.time()-start:.2f}s")
教育科研实验
- 一键切换不同量级模型对比输出效果
- 支持本地部署的学术专用模型
- 提供token成本计算器
5、三步快速上手
1. 安装配置
pip install litellm
export OPENAI_API_KEY="sk-xxx" # 支持同时配置多个平台密钥
export ANTHROPIC_API_KEY="sk-yyy"
2. 基础调用
from litellm import completion
response = completion(
model="huggingface/bigcode-starcoder",
messages=[{"role":"user","content":"用Python实现快速排序"}]
)
print(response.choices[0].message.content)
3. 进阶功能
# 流式响应(适合实时对话场景)
response = completion(model="openai/gpt-4", messages=messages, stream=True)
for chunk in response:
print(chunk.choices[0].delta.content, end="", flush=True)
# 异步批量处理(提升10倍吞吐量)
import asyncio
asyncdefbatch_query():
tasks = [acompletion(model=model, messages=msg) for msg in message_list]
returnawait asyncio.gather(*tasks)
6、项目图片
7、同类项目对比
项目名称 | 核心优势 | 局限性 | 适用场景 |
---|---|---|---|
LiteLLM | 支持模型最多,企业级功能完善 | 配置相对复杂 | 多平台混合开发 |
LangChain | 工作流编排能力强 | 学习曲线陡峭 | AI应用流程设计 |
LlamaIndex | 文档处理专家 | 依赖外部存储 | 知识库构建 |
HuggingFace | 开源模型生态丰富 | 企业级功能缺失 | 学术研究/小规模部署 |
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!