一文搞懂大模型的预训练Pre-training:智能的诞生,看这一篇就够了!

当你向ChatGPT提问时,它总能给出令人满意的回答,仿佛拥有无穷无尽的知识。这种近乎魔法的能力是如何获得的?答案就隐藏在一个被称为"预训练"的神秘过程中。

想象一下,如果要教会一个孩子理解和运用语言,我们会让他大量阅读各种文本,从童话故事到百科全书,从新闻报道到诗歌散文。大模型的预训练过程与此类似,只不过规模要庞大得多。整个过程始于对互联网上海量文本数据的收集,这些数据涵盖了人类知识的方方面面——网页内容、电子书籍、学术论文、新闻文章、论坛讨论等等。

一、Pre-training:预测一个词

什么是预训练(Pre-training)?

预训练本质上是一种大规模的自监督学习过程。与传统神经网络需要人工标注数据不同,预训练巧妙地利用文本数据本身的内在结构作为监督信号。具体而言,它是通过预测文本中的下一个词来学习语言规律。也就是说,预训练把复杂的语言学习问题转化成了一个统计问题:在已知前面所有词的情况下,去推断下一个词最有可能是什么。从某种意义上讲,它本质上就是一个极为复杂的N-Gram模型。
ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling  for... - Language Model - Butterfly Effect

为什么预训练(Pre-training)如此重要?

预训练的革命性意义在于解决了AI训练的根本难题。首先,它绕过了数据标注的瓶颈。互联网上有数万亿字的文本,但人工标注是不可能的。预训练让模型从文本的自然结构中自主学习,无需外部监督。

其次,预训练使模型获得了通用的语言表示能力。通过在海量多样化文本上训练,模型不仅学会了语法和词汇,还获得了常识知识、逻辑推理能力。更令人惊叹的是"涌现能力"现象——当模型规模达到临界点时,会自然展现出训练目标之外的智能行为,从简单的文本预测中涌现出数学推理、代码生成等高级能力。An illustration of next word prediction with state-of-the-art network  architectures like BERT, GPT, and XLNet | by Ajay Arunachalam | Medium

二、预训练过程

从海量文本到智能生成的完整转换流水线

首先从互联网收集并清洗海量文本数据,去除重复和低质量内容;然后通过分词化将文本转换为数字序列,每个词汇对应唯一的token ID;接着进入核心的神经网络训练阶段,模型通过不断预测文本中的下一个token来学习语言规律,其数十亿参数在这个过程中被优化调整,最终学会捕捉语言的统计模式和深层语义;训练完成后,模型在推理时采用自回归方式逐个生成token,每次预测都基于前面所有token的上下文信息,从而能够产生连贯、合理的文本输出——这个看似简单的"预测下一个词"任务,最终使模型获得了强大的语言理解和生成能力。img

1、数据收集与预处理

预训练的第一步是收集海量文本数据。系统从互联网抓取网页内容、电子书籍、新闻文章、学术论文等各类文本。然而,原始数据质量参差不齐,充斥着重复内容和垃圾信息。

专门的数据处理管道会进行严格清洗:去除重复内容、过滤低质量文本、统一格式标准、移除隐私信息等。这个环节决定了模型能学到什么样的知识,是整个流程的关键基础。

img

2、分词化处理(Tokenization)

计算机无法直接理解文字,需要将文本转换为数字序列。分词化采用字节对编码(BPE)算法,通过迭代识别和合并最常见的字符或子词组合来构建词汇表。

举个例子:一段5000字符的文本,经过分词化后被转换为约1300个token,每个token对应词汇表中的唯一数字ID。这种编码方式既保证效率,又能处理各种语言和专业术语。

3、神经网络训练(neural network training)

这是预训练的核心阶段。模型接收长度可达数千token的文本序列,学习预测每个位置的下一个token。训练过程中,神经网络通过复杂的数学计算,包括注意力机制、层归一化等组件,将输入序列转换为高维语义表示。

网络输出是包含数万个概率值的向量,每个值对应词汇表中一个token的出现可能性。模型的数十亿参数在训练中根据预测准确性不断调整优化,逐渐学会捕捉语言的统计规律和深层语义。

4、推理生成(inference)

训练完成的模型展现出令人惊叹的生成能力。这是一个自回归过程:给定起始token,模型计算下一个最可能的token并添加到序列中,然后基于更新后的完整序列继续预测。

每一步预测都基于前面所有token的丰富上下文,使模型能生成语法正确、逻辑连贯的长篇文本。正是通过这种逐token的生成方式,大模型展现出了接近人类水平的语言运用能力。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值