一个Python Interpreter MCP Server应该如何实现

在这里插入图片描述

写在前面:让大模型可以执行python代码

让 AI Agent 能够执行 Python 代码是一项强大的能力,但也伴随着安全和状态管理的挑战。MCP(Model-Controller-Perception)架构提供了一个清晰的思路来组织这种 Agent。

本文聚焦于 MCP 三个组件(模型、控制器、感知器)如何在一个基本的 Python 代码执行场景中协同工作。

1. 核心点

两个核心问题:

  1. 状态维护 (State Management): Python 执行是有状态的。上一步定义的变量 x = 5,下一步需要能用 print(x)。Agent 必须“记住”之前的执行上下文。
  2. 输入输出处理 (Input/Output Handling): 如何让 Agent 知道代码执行成功了、输出了什么、或者哪里出错了?

2. MCP 架构:核心组件的简化职责

我们将 MCP 组件聚焦于解决上述核心问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值