前言
最近,一款名为Manus 的AI工具在AI圈炸了锅。它不仅能自主完成旅行规划、股票分析,甚至能生成3D模型设计方案,号称“AI界的全能选手”。而这一切的背后,离不开一个关键的技术突破——模型上下文协议(MCP)
入门
1. 什么是MCP(Model Context Protocol)
大模型MCP(Model Context Protocol,模型上下文协议)是一种由Claude母公司Anthropic于2024年11月底推出的开放标准,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信协议 。它可以被视为AI应用程序的“USB-C接口”,为应用程序向大语言模型提供上下文的方式提供了标准化方案 。
(图:Norah Sakal)
MCP的核心目标是解决LLM应用与数据源连接的难题,支持通过统一的客户端-服务器架构访问本地资源(如浏览器、数据库、文件系统、API等)或远程资源 。它不仅标准化了工具的开发和接入过程,还优化了在应用层的执行流程 。
(图:技术爬爬虾)
此外,MCP在数据安全方面采取了一系列措施,例如资源控制、数据隐私保护等,确保在双向交互过程中数据的安全性 。通过MCP,开发者可以更轻松地将AI智能体与各种数据源集成,从而提升开发效率和应用灵活性 。
2. 总体架构
MCP的核心遵循客户端-服务器架构,其中主机应用程序可以连接到多个服务器:
(图:modelcontextprotocol)
MCP 主机:希望通过 MCP 访问数据的程序,例如 Claude Desktop、IDE 或 AI 工具
MCP 客户端:与服务器保持1:1 连接的协议客户端
MCP 服务器:轻量级程序,每个程序都通过标准化模型上下文协议公开特定功能
本地数据源:MCP服务器可以安全访问的您的计算机文件、数据库和服务
远程服务: MCP 服务器可通过互联网(例如通过 API)连接到的外部系统
基于MCP的Agent有以下局限性:
(1)暂不支持复杂调用: 例如循环、if-else等结构目前尚未支持。
(2)不支持内存存储:遇到大变量时,可能会出现效果和效率方面的问题。
(3)需要本地启动多个服务器:依赖于本地环境,并需解决兼容性问题。
MCP实战
1. 环境及工具准备
-
UV: Python集成环境工具,安装方式:https://docs.astral.sh/uv/getting-started/installation/
-
NPX: Node js工具,下载地址: https://nodejs.org/zh-cn/download
-
CherryStudio: 大模型集成工具,最新的版本开始支持MCP Sever功能 下载地址:https://docs.cherry-ai.com/cherrystudio/download
-
MCP Server: 实战所需的mcp server 下载地址:https://github.com/modelcontextprotocol/servers
注:请准备以上工具并自行安装,这里我就不在演示了
2. 配置大模型以及MCP Server
2.1. 检查是否支持MCP
打开CherryStudio检查是否支持MCP,按照步骤你可以看如图所示:
1. 点击设置
2. 选择MCP服务器
3. 忽略上面的两个提示
2.2. 配置大模型提供商
如果你本地搭建了大模型,请使用Qwen的模型,它支持Function Calling(函数调用),目前Deepseek R1蒸馏模型不支持Function Calling。
如果你本地没有大模型,可以参考我这篇文章:《 Deepseek服务不可用;无需显卡,带你免费即刻拥有私人大模型服务》 里面有相关步骤,可以设置阿里云百炼的Key,就可以免费使用相应的大模型
接下来开启大模型的Function Calling
本地模型:
1. 选择ollama选项,并填写相关的链接地址
2. 添加模型,并打开“更多设置”
3. 勾选函数调用
阿里云模型:
1. 选择阿里云百炼
2. 配置key
3. 看到有扳手🔧图标的说明已开启Function Calling
4. 开启相关服务
2.3. 验证mcp server
从(https://github.com/modelcontextprotocol/servers)下载的Mcp Server代码,我们进入到目录,看到如下结构:
限于教程,我这里仅演示 filesystem(操作本地文件系统)与time(系统时间) 两个server的功能,两个的使用方法,我们可以查看里面的README.md文档
进入到filesystem中我们执行:
$ ls
Dockerfile index.ts node_modules package.json README.md tsconfig.json
$ npm run build
# 下面是输出结果
> @modelcontextprotocol/server-filesystem@0.6.2 build
> tsc && shx chmod +x dist/*.js
$ ls
# 生成了dist目录
dist Dockerfile index.ts node_modules package.json README.md tsconfig.json
$ npx -y @modelcontextprotocol/server-filesystem
# 提示传参
Usage: mcp-server-filesystem <allowed-directory> [additional-directories...]
最终根据提示我们运行命令验证服务器是否正常
npx -y @modelcontextprotocol/server-filesystem 你的具体桌面路径
# 可以达到下面信息
Secure MCP Filesystem Server running on stdio
Allowed directories: [ '你的具体桌面路径' ]
看到上面信息说明服务没问题,然后我们中断掉,接下来配置到CherryStudio
代码如下:
{
"mcpServers": {
"filesystem": {
"isActive": true,
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"你的具体桌面路径"
]
}
}
}
然后点击确定后:点击启用
若看到状态如下,说明已启用:
2.4. 开启对话,并使用Mcp Server功能
1. 选择聊天
2. 选择默认助手
3. 更换模型
4. 选择你配置好的模型
然后问一个问题:“看看我桌面啥有什么文件?”
然后回答他说无法识别,接下来开启聊天Mcp Sever,如下图
苹果系统需要对文件夹授权,windows则不需要,我们点击允许即可
然后它展示出了我桌面的文件, 如图所示:
接下来给它安排任务:
2.5. 配置time的mcp sever
配置步骤和上面类似,还是先验证服务的可行性,
$ uvx run mcp-server-time --local-timezone=Asia/Shanghai
Using CPython 3.10.16 interpreter at: /usr/local/opt/python@3.10/bin/python3.10
Creating virtual environment at: .venv
# 它会下载依赖的包
由于我下载过,所以直接使用了缓存的
然后就是集成到CherryStudio中,配置内容如下:
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "你的具体桌面路径"]
},
"server_time": {
"command": "uv",
"args": ["run", "--directory", "你下载的代码/src/time", "mcp_server_time", "--local-timezone=Asia/Shanghai"]
}
}
}
然后服务开启步骤请参考上面的步骤
注意:如果遇到无法启动服务,"command": "指令填写完整路径"
编排一个任务验证一下:
至此,两个例子都已演示完毕,谢谢观看。
只要有合适的工具,创意是无限的,探索更多精彩的功能,发挥你的潜力。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓