GBDT梯度提升分类树原理

本文深入探讨GBDT(Gradient Boosting Decision Tree)的原理,从算法概述到损失函数的推导过程,解析决策回归树的初始值计算,并详细阐述在每轮学习中的CART节点得分计算,最终揭示梯度更新规则。
摘要由CSDN通过智能技术生成

本文主要介绍GBDT(Gradient Boosting Decision Tree)的实现原理。

算法

在这里插入图片描述
其中, F 0 F_0 F0表示决策回归树的初始值。

损失函数为:
ψ ( y , F ( x ) ) = − y l o g e ( p ) − ( 1 − y ) l o g e ( 1 − p ) \psi(y,F(x)) = -ylog_e(p) - (1-y)log_e(1-p) ψ(y,F(x))=yloge(p)(1y)loge(1p),其中 p = 1 1 + e x p ( − F ( x ) ) p = \frac{1}{1 + exp(-F(x))} p=1+exp(F(x))1

推导过程

  1. 损失函数处理

首先进行化简:

ψ ( y , F ( x ) ) = y l n ( 1 + e x p ( − F ( x ) ) ) − ( 1 − y ) l n ( e x p ( − F ( x ) ) 1 + e x p ( − F ( x ) ) ) = y l n ( 1 + e x p ( − F ( x ) ) ) − ( 1 − y ) ( − F ( x ) − l n ( 1 + e x p ( − F ( x ) ) ) ) = ( 1 − y ) F ( x ) + y l n ( 1 + e x p ( − F ( x ) ) ) + ( 1 − y ) l n ( 1 + e x p ( − F ( x ) ) ) = ( 1 − y ) F ( x ) + l n ( 1 + e x p ( − F ( x ) ) ) = − y F ( x ) + F ( x ) + l n ( 1 + e x p ( − F ( x ) ) ) = − y F ( x ) + l n ( e x p ( F ( x ) ) ) + l n ( 1 + e x p ( − F ( x ) ) ) = − y F ( x ) + l n ( e x p ( F ( x ) ) ∗ ( 1 + e x p ( − F ( x ) ) ) = − y F ( x ) + l n ( 1 + e x p ( F ( x ) ) ) = − ( y F ( x ) − l n ( 1 + e x p ( F ( x ) ) ) ) \psi(y,F(x)) = yln(1 + exp(-F(x))) - (1-y)ln(\frac{exp(-F(x))}{1 + exp(-F(x))}) \\ = yln(1 + exp(-F(x))) - (1 - y)(-F(x) - ln(1 + exp(-F(x)))) \\ = (1 -y)F(x) + yln(1 + exp(-F(x))) + (1 - y)ln(1 + exp(-F(x))) \\ = (1 - y)F(x) + ln(1 + exp(-F(x))) \\ = -yF(x) + F(x) + ln(1 + exp(-F(x))) \\ = -yF(x) + ln(exp(F(x))) + ln(1 + exp(-F(x))) \\ = -yF(x) + ln(exp(F(x))*(1 + exp(-F(x))) \\ = -yF(x) + ln(1 + exp(F(x))) \\ = -(yF(x) - ln(1 + exp(F(x)))) ψ(y,F(x))=yln(1+exp(F(x)))(1y)ln(1+exp(F(x))exp(F(x)))=yln(1+exp(F(x)))(1y)(F(x)ln(1+exp(F(x))))=(1y)F(x)+yln(1+exp(F(x)))+(1y)ln(1+exp(F(x)))=(1y)F(x)+ln(1+exp(F(x)))=yF(x)+F(x)+ln(1+exp(F(x)))=yF(x)+ln(exp(F(x)))+ln(1+exp(F(x)))=yF(x)+ln(exp(F(x))(1+exp(F(x)))=yF(x)+ln(1+exp(F(x)))=(yF(x)ln(1+exp(F(x))))

接着进行求导:

ψ ′ ( y , F ( x ) ) = − y + σ ( F ( x ) ) \psi'(y,F(x)) = -y + \sigma(F(x)) ψ(y,F(x))=y+σ(F(x)),其中 σ ( F ( x ) ) = 1 1 + e x p ( − F ( x ) ) \sigma(F(x)) = \frac{1}{1 + exp(-F(x))} σ(F(x))=1+exp(F(x))1
ψ ′ ′ ( y , F ( x ) ) = σ ( F ( x ) ) ( 1 − σ ( F ( x ) ) ) \psi''(y,F(x)) = \sigma(F(x))(1 - \sigma(F(x))) ψ(y,F(x))=σ(F(x))(1σ(F(x)))

  1. 决策回归树初始值计算

F 0 ( x ) = ρ F_0(x) = \rho F0(x)=ρ
F 0 ( x ) = a r g m i n ρ ∑ i = 1 N ψ ( y i , ρ ) = a r g m i n ρ H ( ρ ) = − ∑ i = 1 N ( y i ρ − l o g ( 1 + e x p ( ρ ) ) ) F_0(x) = {argmin}_{\rho}\sum\limits_{i = 1}^N\psi(y_i,\rho) \\ = argmin_{\rho}H(\rho) \\ = -\sum\limits_{i=1}^N(y_i\rho -log(1 + exp(\rho))) F<

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值