什么是AIoT?AIoT技术的常见使用场景
AIOT,即人工智能和物联网的结合,是一种新型技术和应用模式的融合。AIOT可以通过智能硬件和云计算等技术手段,实现智能家居、智能健康、智慧城市、智能工业等领域的创新应用。
简单定义:AIoT(人工智能物联网)=AI(人工智能)+IoT(物联网)。
AIoT智慧物联平台是一个物联网数据服务平台,具有数据采集、分析与监控、预警、资产与人员管理等应用功能。平台界面友好,可扩展性强,支持多种传感器数据采集和多种终端查阅管理。系统特点包括可靠、安全、实时预警、可查、扩展性强等。可应用于叉车无人驾驶系统、智能集装箱系统等多种场景。
1、AIoT定义
- 随着物联网设备规模的迅速扩大,物联网设备所产生的数据量也在持续增长,单纯依靠人工进行海量数据的处理显然已经无法满足各行各业的需求。人工智能带来了高效智能的技术手段,可以很好的完成对海量的、复杂无序数据的处理。而有了AI的助力,IoT系统也将实现流程的优化以及产品交互体验的升级。发展到目前,将AI技术和IoT技术进行融合,构建AIoT系统已成为各大行业向数字化转型升级的必经之路。
- 对于AIoT的概念,业内普遍认为AIoT即人工智能物联网,也称智能物联网,广义上是指人工智能技术与物联网技术的融合及其在实际场景中的应用。AIoT是新的物联网应用形态,将物联网产生并收集到的数据存储于云端,通过人工智能、大数据进行分析,并赋予其智能化特性,实现真正意义上的万物互联。
- 可以理解为,AIoT是给IoT加装了一个AI大脑,让设备的简单连接上升为智能交互。而IoT相对于AI而言,则是一大超级感知系统,依托丰富的物联网传感设备,可进行视觉、听觉、温度、环境等各类传感数据的采集,并将这些数据发送给AI进行分析和处理。与此同时,这些数据也是AI进行深度学习的重要“养料”,
训练出越来越智能的AI。 - 作为一种新的IoT应用形态,AIoT与传统的IoT区别在于,传统的物联网是通过有线和无线网络,实现物-物、人-物之间的互联,而AIoT不仅是实现设备和场景间的互联互通,还要实现物-物、人-物、物-人、人-物-服务之间的连接和数据的交互。物联网与人工智能相融合,最终追求的是形成一个智能化生态体系,在该体系内,实现不同智能终端设备之间、不同系统平台之间、不同应用场景之间的互联互通。
2、AIoT产业链
AIoT基于原本的物联网架构发展而来,相较于传统的物联网基础架构,AIoT系统架构在感知层和平台层方面衍生了更多的系统组成元素。
比如在感知层,主要表现在拥有更加丰富全面的前端传感系统,且伴随着人工智能技术的进步,通过AI算法的嵌入,传感设备在传感精度和传感维度(基于视觉、声音等维度)方面都迎来了不断的突破。
传统物联网平台更多只做连接管理,而AIoT平台中,数据的汇聚和分析处理成为重点。
2.1 AIoT系统架构四大层级:
图:AIoT系统架构
(1) 感知层为 AIoT 的基础部件,主要包括底层设备芯片、传感器等,如 RFID、传感器、摄像头、雷达、AI算法等,主要用于各类信息数据的采集。
(2) 传输层是 AIoT 进行信息传输的网络通道,主要包括局域网、低功耗广域网、蜂窝网等无线通信。随着 AIoT 产业发展,物联网设备数量快速增加,设备种类、设备应用场景日益丰富,更灵活的无线网络连接能力将是市场的必然选择。同时,低时延、大带宽、广连接的5G 网络也将为 AIoT 应用带来更多可能性。代表性企业主要涉及中兴、华为、移远通信、广和通等。
(3) 平台层是各种信息汇集处理的云平台,包括底层支撑平台、连接管理平台、解决方案平台等,代表性企业包括华为、谷歌、小米、涂鸦智能等。
(4) 应用层是AIoT技术的落地应用,为客户提供智能终端设备,以及结合应用场景为企业提供垂直行业解决方案,并提供实时分析、生产监测等增值服务以收取额外费用。典型落地应用领域包括智慧城市、智能安防、智能工业、智能家居等等。代表性企业包括海康威视、大华股份等视频物联网头部企业,AI四小龙,美的、海尔等智能家居企业等。
上游主要包括芯片、传感器、通信模组等硬件供应商,机器学习、机器视觉、语音识别等AI算法服务商等;AIoT产业链中游主要包括通信设施供应商,电信厂商,云服务商,操作系统、应用软件等软件提供商等;下游主要是解决方案提供商、智能产品生产商等。
2.2 AIoT产业结构
纵观AIoT,它贯穿了“端-管-边-云-用”五个板块,横看AIoT,它覆盖了智能安防、智能家居、智慧社区、智慧物流、智能工业、智慧医疗等垂直领域。
AIoT产业结构及市场占比
- “端”指的是终端,主要包括底层的芯片、模组、传感器、屏幕、AI底层算法、操作系统等。
- “边”是相对于“中心”的概念,泛指中心节点之外的位置。边缘计算则指的是将计算及相关能力从中心处理节点下放至边缘节点后形成的,贴近终端的计算能力。
- “管”主要指的是连接通道,及相关产品和服务。大物联时代带来的大连接数和复杂设备现场环境,使得有线连接网络捉襟见肘,因此在AIoT应用场景中,网络以无线连接为主。
- “云”主要指PaaS平台,包括物联网平台、AI平台和其他能力平台。
- “用”指的是AIoT产业应用行业,AIoT技术目前已广泛落地于家居、安防、汽车、交通、商业、工业、医疗、教育、智慧城市等各个应用领域。
3、 为什么IoT需要AI ?
物联网目前日渐成熟,下游应用场景也在持续扩充,但如果只是单纯追求把设备连接起来,形成的只是万物互联,难以发挥物联网的巨大价值。
物联网的终极目标是实现万物智联,只有赋予物联网一个“大脑”,才能够实现真正的万物智联,发挥物联网和人工智能更大的价值。
而AI技术通过分析、处理历史和实时数据,可以对未来的用户习惯进行预测,使设备变得更加“聪明”。
举个例子,当智能手表检测到你进入睡眠状态后,不仅空调会自动调节温度,同时,客厅的电视、音箱,以及窗帘、灯等都会自动进入关闭状态。
AIoT发展迅速,在智能家居、智慧城市、智慧交通、工业机器人等领域已有不少应用,未来还将继续渗透。
AIoT设备涉及的芯片包括:控制芯片(MCU)、电源管理芯片、传感器芯片、无线连接芯片、音视频处理芯片等。
4、常见的应用场景
1、智慧城市
城市拥有海量的物联网感知终端,其中视觉感知系统——视频监控网络基本遍布全国。在此基础上,包括环境感知、水位感知等非视觉感知系统共同构建起了庞大的城市物联网基础。
将AI与各类空间中的物联网设备深度融合,通过AIoT操作系统贯通设备间从数字化感知到自动化执行的链路,是推进城市空间数字化建设进程的重要途径。
2、自动驾驶汽车
自动驾驶汽车可能是当今 AIoT 最明显和最广泛的应用。特斯拉等自动驾驶汽车制造商使用其目前在道路上行驶的汽车,在手动和自动驾驶时收集数百万个数据点。他们使用这些数据来绘制道路地图,优化车辆的自动驾驶系统,并丰富其数据池,以在未来开发更好的车辆。
3、制造业
如今,物联网和 AIoT 的最大采用者是智能工厂,以使用人工智能来提高其性能和效率。高度工业化国家的大多数工厂已经在使用嵌入式传感器来收集制造流程中的各种数据。
通过使用AIoT,工业和制造业机器人变得越来越智能,AIoT允许工厂机器人学习模式,并在中断、延迟和损坏发生之前预测它们。预测性维护可能是任何制造商最妙的省钱之道。
4、可穿戴设备
智能手表等可穿戴设备可以持续监测和跟踪用户的偏好和习惯。这不仅在医疗技术领域产生了影响深远的应用,也适用于运动和健身领域。此前,相关公司估计,到2023年,全球可穿戴设备市场的收入将超过870亿美元。
5、智能家居
据相关数据机构预测,随着AI技术和5G的出现,以及智能家居产品在消费者终端认知方面的逐步提升,智能家居产品将迎来爆发式增长,到2025年全球智能家居产品市场规模将超过1,900亿美元。而智能电器(如智能插座、开关等)、家庭安防、智能照明、智能家电和智能音箱是AI在智能家居领域中的主要应用场景。
5、 AIoT是如何工作的?
5.1 AIoT 系统可以通过两种方式实现:
- 作为基于云的系统
- 作为在连网设备上运行的边缘系统
AIoT 系统的架构会因实施策略而异。
5.2 基于云的 AIoT
使用基于云的方法,AIoT 解决方案的基本架构如下所示:
- 设备层:各种硬件设备(移动设备、标签/信标、传感器、健康和健身设备、车辆、生产设备、嵌入式设备)
- 连接层:现场网关和云网关
- 云端层:数据存储、数据处理(AI引擎)、数据可视化、分析、通过API访问数据
- 用户交互层:门户网站和移动应用程序
5.3 边缘AIoT
通过边缘分析,收集的数据在更接近源的位置进行处理——无论是在连网设备上还是在现场网关上。
- 收集终端层:连接到网关的各种硬件设备(移动、标签/信标、传感器、健康和健身设备、车辆、生产设备、嵌入式设备)
- 边缘层:用于数据存储、数据处理(AI 引擎)和见解生成的设施
不过,以边缘为中心的实施并不排除云计算,例如,基于云的数据存储可用于收集有关系统性能的元数据或训练边缘人工智能所需的上下文信息。
6、AIoT在不同领域的热门应用
在许多因素的推动下,如新软件工具的可用性、简化的人工智能解决方案的开发、将人工智能注入传统系统,以及支持人工智能算法的硬件的进步,AIoT正在许多领域中悄然兴起。以下是一些已经利用AIoT的行业——其中最有前途的用例备受关注。
6.1 医疗保健
诊断协助
AIoT 可以帮助医疗保健提供者做出更精确的诊断决策。智能医疗物联网解决方案从各种来源获取患者数据——从诊断设备到可穿戴设备再到电子健康记录——并综合分析这些数据,以帮助医生正确诊断患者。
基于人工智能的医疗解决方案已经在多个诊断领域超过了人类医疗保健专业人员。全球的放射科医生都在依赖人工智能的帮助进行癌症筛查。
在 Nature Medicine 发表的一项研究中,人工智能在确定患者是否患有肺癌方面胜过了6名放射科医生。该算法对来自美国国立卫生研究院临床试验数据记录的 42,000 名患者资料进行了训练,检测到的癌症病例比人类同行多了5%,并将误报的数量减少了11%。值得一提的是,假阳性提出了诊断肺癌的一个特殊问题:AMA Internal Medicine对2100名患者的研究表明,假阳性率为97.5%。因此,人工智能有助于解决关键诊断问题。
AIoT 系统在诊断乳腺癌、皮肤病和皮肤癌时同样表现出色。然而,智能互联系统的可能性远不止于此。
最近的研究表明,人工智能可以检测儿童的罕见遗传病、婴儿的遗传性疾病、胆固醇升高的遗传性疾病、神经退行性疾病,并预测导致阿尔茨海默病的认知衰退。
改进治疗策略和跟踪康复过程
遵循与诊断患者相同的原则,AIoT 系统可以帮助制定更好的治疗策略并根据患者的需求进行调整。
结合来自治疗方案的数据、患者的病史以及来自连网设备和可穿戴设备的实时患者信息,智能算法可以建议剂量调整,排除患者发生过敏的可能性,并避免不适当或过度治疗。AIoT促进治疗的一些重要领域包括:治疗伴有血液凝固的疾病、更好的哮喘和慢性呼吸系统疾病管理、更有效的新冠肺炎治疗、优化糖尿病管理等。
优化医院工作流程
AIoT 可以改变医院的运营方式,改善以下关键领域的日常工作流程:
- 减少等待时间
由 AIoT 提供支持的自动床位跟踪系统可以在床位空闲时通知医院工作人员,从而接收更多患者。纽约西奈山医疗中心等早期采用者的经验证明,技术可以帮助减少50%急诊患者的等待时间。
- 识别危重病人
识别需要立即关注的患者对于提供优质护理至关重要。为了做出正确的决定,医生需要在巨大的压力下分析大量信息,而AIoT可以帮助医务人员确定工作的优先顺序。互联系统可以分析患者的生命体征,并提醒医生患者的病情正在恶化。
几个类似的系统在重症监护室进行了测试。例如,旧金山大学试行了一种人工智能解决方案,该解决方案能够检测败血症的早期迹象,这是一种致命的血液感染。研究结果显示,接受人工智能治疗的患者感染的可能性降低了58%,死亡率降低了12%。
- 跟踪医疗设备
借助支持 AIoT 的设备跟踪,医院可以降低丢失关键医疗设备的风险,并做出更明智的设备管理决策,从而每年每张床位节省 12,000 美元。关键医疗设备可以通过RFID或GPS系统在医院内外进行跟踪,而医疗和管理人员可以使用WEB和移动应用程序快速定位所需设备。
6.2 制造业
- 启用预测性维护
通过配置AIoT传感器,机器可以测量各种参数,包括温度、压力、振动、转速等,制造商可以实时了解其资产的健康状况,并根据实际需要安排维护。
虽然基本分析通常足以检测到接近临界操作阈值的设备,但人工智能可以根据历史维护和维修数据提前预测异常。根据普华永道的一份报告,通过预测性维护,制造商可以将设备正常运行时间提高 9%,将成本降低 12%,将安全风险降低 14%,并将其资产的使用寿命延长 20%。
- 改善资产性能管理
有了 AIoT 系统,制造商可以定期更新其资产的性能,并深入了解性能变化的原因。大多数基于物联网的资产性能管理系统都允许在设备偏离设定的 KPI 时获得自动警报通知。
反过来,人工智能引擎有助于挖掘性能下降的原因(如果有的话),并确定在每个单独设置中跟踪测量的 KPI 是否合理。使用性能管理软件,制造商可以优化设备利用率并提高整体设备效率。
- 使用数字孪生促进生产规划
据 Gartner 称,数字孪生可以帮助制造商将生产效率提高至少 10%。一个资产、系统或流程的数字副本、一个工业的、支持AIoT的数字孪生,可以帮助制造商获得车间运营的端到端可见性,并帮助及时发现甚至预测低效率。
使用数字孪生的制造企业表示,他们可以实现持久的改进,包括在两年内将可靠性从 93% 提高到 99.49%,将维护需求减少 40%。
- 通过工业机器人自动化车间操作
工业机器人长期以来一直是车间的一部分。随着生产物联网解决方案变得越来越容易获得,机器人正变得更加智能和独立。工业机器人配备了传感器并依靠人工智能,现在能够在行进中做出明智的生产决策,从而提高了制造单元的效率。
6.3 汽车和交通
- 交通管理
AIoT可用于缓解交通拥堵,提高交通质量。例如,台北市利用 AIoT 监控 25 个路口的信号设备。在这个系统中,智能传感器和摄像头收集交通、人流和道路占用的实时数据,而人工智能算法分析这些数据并应用适当的控制逻辑。
这种方法有助于城市管理部门优化交通流量,并确保安全顺畅的驾驶体验。
- 自动驾驶汽车
自动驾驶汽车和高级驾驶辅助系统 (ADAS) 是 AI 算法解释和处理实时物联网数据的显著例子。
自动驾驶汽车根据来自各种传感器的数据创建周围环境地图,例如,雷达传感器监测附近车辆的位置;摄像头检测交通信号灯、路标、其他车辆和行人;激光雷达传感器测量距离、检测道路边界并识别车道标记。
然后,人工智能软件处理传感器数据,绘制最佳路线,并向汽车执行器发送指令,控制加速、制动和转向。硬编码规则、避障算法、预测建模和对象识别有助于软件遵循交通规则并避开障碍物。
7、关键的 AIoT 实施挑战,以及如何解决这些挑战
在全球实施的所有物联网项目中,76% 失败了,其中 30% 早在概念验证阶段就失败了。为了避免将投资导向注定要失败的项目,公司应该注意可能阻碍其 AIoT 实施的常见挑战。公司最常遇到的挑战包括:
- 在没有明确目标的情况下踏上 AIoT 之旅。
启动AIoT项目时,组织可能会被新奇的事物所吸引,而无法评估他们想法的可行性。反过来,这可能导致在开发的后期阶段成本不受控制地攀升,并最终导致利益相关者不满意。为避免这种情况,我们建议您从探索阶段就开始您的 AIoT 项目,在这个阶段,可以根据设定的业务目标、客户期望和组织能力对想法进行审查和权衡。
- 选择最佳实施策略。
如前所述,AIoT 解决方案可以实施为云、边缘或混合系统。在起草实施策略时,仔细权衡未来解决方案的带宽、延迟和速度要求,并将它们与设定的成本进行对比。经验法则是,对于跨大量设备的时间关键型系统,可以进行边缘部署,并在最小延迟和高带宽不太重要的情况下依赖于云。
- 部署周期缓慢,成本难以估计。
AIoT 项目需要长期承诺。根据特定的用例,实施过程可能需要几个月到几年的时间。随着技术环境的快速变化,解决方案有可能在其完全投入运行时变得过时,并且失去对实施成本的控制。为了防止这种情况,企业需要足够灵活,以便能够在此过程中应对各种变化。
- 需要连接高度异构和复杂的系统。
根据您未来解决方案的规模和您所在的行业,您可能需要将高度异构的传统设备连接到 AIoT。这通常是一项难以完成的任务,它需要规划和了解可用的选项。例如,您可以选择将传感器嵌入到传统机器,通过网关连接它们,甚至完全替换它们。无论采用何种方法,请务必尽早起草可行的数字化方案。
- 没有足够的数据来训练 AI 算法。
为了产生可靠的见解,人工智能算法需要在大量数据上进行训练。如果数据量不足(或可用但由于隐私原因无法使用),您将不得不使用其他策略来弥补数据不足。常见的方法包括转移学习(想想:使用已经训练过的神经网络解决类似问题)、数据增强(修改现有样本以获取新的数据条目)或求助于合成数据。
- 努力挖掘 AIoT 系统的最佳性能。
AIoT 系统的性能取决于一系列因素,包括硬件功能、数据负载、系统架构、实施方法等。为避免运行中的性能问题,请提前计划潜在的数据负载并相应地调整实施策略。
- 解决软件和固件漏洞。
许多 AIoT 项目之所以失败,是因为在规划阶段没有考虑到数据、设备、服务器和通信网络的安全性。如果您处理高度敏感的数据,请考虑混合部署,在混合部署中,数据在更靠近数据源的地方被处理,因此数据在传输过程中或云中被破坏的风险被降至最低。