图像二值化处理:固定阈值操作 threshold
/**
* 固定阈值操作,
* 该函数的典型应用是对灰度图像进行阈值操作得到二值图像。 或者是去掉噪声,例如过滤很小或很大象素值的图像点。
* 对图像取阈值的方法由 threshold_type 确定:
* THRESH_BINARY 大于阈值的部分被置为255,小于部分被置为0
* THRESH_BINARY_INV 大于阈值部分被置为0,小于部分被置为255
* THRESH_TRUNC 大于阈值部分被置为threshold,小于部分保持原样
* THRESH_TOZERO 小于阈值部分被置为0,大于部分保持不变
* THRESH_TOZERO_INV 大于阈值部分被置为0,小于部分保持不变
* threshold(
* Mat src, --输入图像
* Mat dst, --输出图像
* double threshold, --当前阈值
* double max_value, --最大阈值,一般为255
* int threshold_type --阈值类型
* )
*/
@Test
public void testThreshold() {
Mat src = GeneralUtils.converMat("D:\\test\\0001.jpg");
//转成灰度图
Mat gray = new Mat();
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
Mat dst = new Mat();
//大于阈值的部分被置为255,小于部分被置为0
Imgproc.threshold(gray, dst, 127, 255, Imgproc.THRESH_BINARY);
GeneralUtils.saveByteImg(dst, "D:\\test\\THRESH_BINARY.jpg");
//大于阈值部分被置为0,小于部分被置为255
Imgproc.threshold(gray, dst, 127, 255, Imgproc.THRESH_BINARY_INV);
GeneralUtils.saveByteImg(dst, "D:\\test\\THRESH_BINARY_INV.jpg");
//大于阈值部分被置为threshold,小于部分保持原样
Imgproc.threshold(gray, dst, 127, 255, Imgproc.THRESH_TRUNC);
GeneralUtils.saveByteImg(dst, "D:\\test\\THRESH_TRUNC.jpg");
//小于阈值部分被置为0,大于部分保持不变
Imgproc.threshold(gray, dst, 127, 255, Imgproc.THRESH_TOZERO);
GeneralUtils.saveByteImg(dst, "D:\\test\\THRESH_TOZERO.jpg");
// 大于阈值部分被置为0,小于部分保持不变
Imgproc.threshold(gray, dst, 127, 255, Imgproc.THRESH_TOZERO_INV);
GeneralUtils.saveByteImg(dst, "D:\\test\\THRESH_TOZERO_INV.jpg");
//自动阈值寻找与二值化
double t = Imgproc.threshold(gray, dst, 0, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
System.out.println(t);
}
自动阈值操作:adaptiveThreshold
/*
* 自适应阈值adaptiveThreshold,图像二值化处理,用于图像信息与特征的提取,对于对比大的图像有较好效果,
* 相对于opencv中固定阈值化操作(threshold()),自适应阈值中图像中每一个像素点的阈值是不同的,该阈值由其领域中图像像素带点加权平均决定
* adaptiveThreshold(
* Mat src, --输入图像
* Mat dst, --输出图像
* double maxValue, --最大阈值255
* int adaptiveMethod, --超过阈值的部分取值是多少(对于cv.THRESH_BINARY而言)
* int thresholdType, --这是阈值类型,只有两个取值,分别为 THRESH_BINARY 和THRESH_BINARY_INV
* int blockSize, --像素的邻域块大小选择,这是局部邻域大小,3、5、7等
* double C --这个参数实际上是一个偏移值调整量,用均值和高斯计算阈值后,再减或加这个值就是最终阈值。
* );
*/
@Test
public void testAdaptiveThreshold() {
Mat src = GeneralUtils.converMat("D:\\test\\0001.jpg");
Mat gray = new Mat();
Mat binary = new Mat();
//转成灰度图像
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
//自适应阈值
Imgproc.adaptiveThreshold(gray, binary, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, 7, 10);
GeneralUtils.saveByteImg(binary, "D:\\test\\adaptiveThreshold.jpg");
}
《脉经》