在win10中利用Anaconda直接安装tensorflow-gpu 不需要另行安装cuda cudnn

本文详细介绍了如何使用Anaconda在Windows环境下快速安装TensorFlow-GPU,包括环境搭建、配置清华镜像加速、安装CUDA和cuDNN等关键步骤。
部署运行你感兴趣的模型镜像

2022 0117 更新

ZZY看文章更新后绿色的字就好。

也许你都了解过,但可以在这里复习一下。

最近在用tensorflow跑cnn,之前一直用cpu版本,最近主机到了,开始学着装gpu版本。

上网看了一下,大多数tensorflow-gpu的安装分三部分:Anaconda的安装、CUDA+cudnn的安装、tensorflow-gpu的安装。

这些安装之间的版本要保持匹配,挺晕的。

但其实,利用Anaconda,是可以一步到位的。

本机配置:win10 gtx1060 


首先下载Anaconda: Anaconda | Individual Edition

安装之后记得添加环境变量(也可以不添加):


FOR ZZY 

如何创建新的python环境:

在添加完环境变量后打开cmd(如果没有添加就打开Anaconda Prompt)

(1)查看conda环境: conda env list

  

(2)创建一个新环境:conda create -n env_name python=x.x

(有可能会出错Collecting package metadata (current_repodata.json): failed  试试关掉VPN)

(3)启动刚创建的环境:conda activate forzzy

(4)安装所需要的依赖库:conda install xxx

 安装完所有需要的库之后,就可以在PyCharm中使用这个库了:

打开PyCharm -> File -> Settings -> Project: XXX -> Python Interpreter ->  -> Add

这样就OK了。


 

 

下面不用看

 安装过后,打开Anaconda Prompt

先配置清华镜像!不然下载会很慢很慢很慢!

anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

输入

conda install tensorflow-gpu

可以发现会自动下载cuda+cudnn

输入y后开始(中途千万别关!

出现这个说明安装OK 

如果提示有错误,那么..卸载了Anaconda然后重新安装吧...


用Pycharm加载Anaconda的环境库,并实验一下tensorflow-gpu能不能用:

在Pycharm中写入(如果你没装CPU版本的tensorflow,不写也可以):

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as session:
    # your training session

训练前/训练中GPU使用情况:

  


可以看出,这种方法是可行的。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

Windows 10上通过Anaconda安装tensorflow-gpu和keras时,正确配置CUDAcuDNN是关键步骤。这仅涉及到下载合适的版本,还涉及到它们之间版本的对应关系。首先,你需要确认你的GPU显卡是否支持CUDA。以NVIDIA的GTX1650显卡为例,它支持最新的CUDA版本。接下来,你应该根据显卡支持的CUDA版本来决定安装tensorflow-gpu版本。比如,如果你的显卡支持CUDA 11.0,那么你应该下载安装TensorFlowGPU版本,该版本必须与CUDA 11.0兼容。同时,你也需要下载CUDA版本相匹配的cuDNN版本。例如,CUDA 11.0通常需要cuDNN v8.0.5。安装cuDNN之前,需要先注册NVIDIA的开发者账号,然后在NVIDIA官网下载相应版本的cuDNN安装过程中,确保CUDAcuDNN的版本兼容,以避免安装过程中出现的错误。在安装tensorflow-gpu之前,建议使用Anaconda创建一个新的虚拟环境,这样可以避免与其他Python包的依赖冲突。使用命令`conda create --name tf_gpu python=3.x`创建环境,其中`3.x`是你希望使用的Python版本。激活新环境后,使用`pip install tensorflow-gpu`命令进行安装安装完成后,可以通过运行Python代码来测试TensorFlow是否能够正确识别到GPU设备:`import tensorflow as tf; print(tf.test.gpu_device_name())`。如果安装配置正确,将输出GPU设备名称。 参考资源链接:[Windows 10Anaconda配成功tensorflow-gpu+keras:CUDAcudnn安装指南](https://wenku.csdn.net/doc/18t9ua6wj0?spm=1055.2569.3001.10343)
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值