- 考虑周期为 τ = 1 s \tau=1s τ=1s ,峰值为 ± 1 \pm1 ±1的方波信号,其MATLAB代码实现为:
clear all;clc;
%幅值为A,t为周期
T=0:0.01:5; A=1;t=1;
y=A*square(t*2*pi*T);
plot(T,y,'r','Linewidth',2);
axis([T(1) T(end) -(A+0.5) (A+0.5)]);
set(gca, 'LineWidth',2);
xlabel('时间/s'); %%设置横坐标
ylabel('幅值'); %%设置纵坐标
title('周期为1的方波'); %%设置标题
grid on;
set(gca, 'GridLineStyle', ':'); % 设置为虚线
-
其傅里叶级数表达式为:
x ( t ) = 4 A π ( 1 s i n ω 0 t + 1 3 s i n 3 ω 0 t + 1 5 s i n 5 ω 0 t + . . . ) . x(t) = \frac{4A}\pi(1sin\omega_0t+\frac13sin3\omega_0t+\frac15sin5\omega_0t+...)\,. x(t)=π4A(1sinω0t+31sin3ω0t+51sin5ω0t+...).
其中:A = 1, ω 0 = 2 π τ = 2 π \omega_0=\frac{2\pi}{\tau}=2\pi ω0=τ2π=2π -
其频率域分量分别为 ω 0 , 3 ω 0 , 5 ω 0 ⋯ \omega_0,3\omega_0,5\omega_0 \cdots ω0,3ω0,5ω0⋯, 各分量的幅值分别为 4 A π , 4 A 3 π , 4 A 5 π ⋯ \frac{4A}\pi,\frac{4A}{3\pi},\frac{4A}{5\pi} \cdots π4A,3π4A,5π4A⋯,其MATLAB代码实现为:
clear all;clc;
seq = 1:2:30;
x = seq .* 2 .* pi;
y = 4 ./ pi ./ seq;
stem(x,y,'-gx')
axis([x(1)-5 x(end) 0 1.5]);
xlabel('频率'); %%设置横坐标
ylabel('幅值'); %%设置纵坐标
title('周期为1的方波的傅里叶级数'); %%设置标题
grid on;
set(gca, 'GridLineStyle', ':'); % 设置为虚线
4. 当
τ
=
1
\tau=1
τ=1逐渐变为2, 4,8,16时
-_-| 尴尬好像出问题了。随着周期的增大频率的间隔不断变小,但是并不是在原有基础上进行插点的。
不过仍然可以证明,当认为一个曲线或者函数我们认为它是一个周期无限大的函数的话,他的傅里叶级数展开中所有的频率分量是趋于连续的,其频率分量幅度对于频率分量数值的变化趋于一个连续函数,这个连续函数应该就是此曲线或者函数的傅里叶变换。
不知这样理解是否妥当。