柱状图显著性标记

本期教程原文:使用最简单方法添加显著性ggsignif包

本期教程

获得本期教程代码和数据,在后台回复关键词:20240605

小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程转录组上游分析转录组下游分析等内容。凡是在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相关代码,我们会持续更新中。

往期教程部分内容










### 创建显示统计显著性的分组条形图 要在R语言中创建带有显著性标记的分组条形图,可以利用`ggplot2`包的强大绘图功能,并结合其他辅助包如`ggsignif`来标注显著性。以下是具体实现方法: #### 所需软件包安装与加载 首先确保已安装并载入必要的库: ```r install.packages(c("ggplot2", "ggsignif")) library(ggplot2) library(ggsignif) ``` #### 数据准备 构建一个简单的数据框作为例子,该数据框包含两个因子变量(Group, Subgroup)和一个连续型响应变量(Value),这有助于理解如何处理实际研究中的多维分类数据。 ```r set.seed(123) # 设置随机种子以便结果可重复 df <- data.frame( Group = factor(rep(c('G1', 'G2'), each=8)), Subgroup = rep(factor(paste0('S', 1:4)), times=4), Value = c(rnorm(n=8, mean=5), rnorm(n=8, mean=7)) ) head(df) # 查看前几行数据结构 ``` #### 绘制基础分组图表 使用`ggplot()`初始化图形对象,并通过指定aes映射参数定义各维度对应关系;接着调用`geom_bar(stat="identity")`绘制直方柱体部分。 ```r base_plot <- ggplot(data=df, aes(x=Subgroup, y=Value, fill=Group)) + geom_bar(position='dodge', stat="identity") print(base_plot) ``` #### 添加显著性测试及其注解 为了评估两组间是否存在统计学意义上的差异,可以在同一张图表上加入成对比的结果。这里采用`t.test()`执行独立样本T检验,并借助于`stat_compare_means()`自动完成P值计算及格式化输出。最后运用`geom_signif()`向选定区域添加星号或其他形式的重要程度指示符。 ```r final_plot <- base_plot + stat_compare_means(aes(label=p.signif), method="t.test", comparisons=list(c("G1", "G2")), label.y=nrow(unique(df$Value))+1)+ geom_signif(comparisons=list(c("G1", "G2")), map_signif_level=TRUE, textsize=3.5, vjust=-0.2) print(final_plot)[^1] ``` 此代码片段展示了完整的流程:从环境配置到最终呈现一张既美观又富含信息量的分组条形图,其中包括了基于实验设计所得到的具体统计数据支持下的结论表达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杜的生信筆記

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值