【阅读】Generative Adversarial Active Learning

这篇博客介绍了Generative Adversarial Active Learning (GAN-AL)的方法,通过利用生成式模型创造不确定性高的样本,提升模型在有限标注数据下的学习效率。它结合了深度学习的生成模型和主动学习的思想,为模型训练提供了一种创新策略。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值