【强化学习】GAIL生成对抗模仿学习详解《Generative adversarial imitation learning》

本文深入探讨了强化学习中的模仿学习,特别是生成对抗模仿学习(GAIL)的概念。通过对《Generative adversarial imitation learning》的解析,阐述了行为克隆、逆向强化学习(IRL)和GAIL的区别与联系。GAIL通过模拟专家轨迹,绕过IRL的复杂步骤,直接学习策略。文中还涉及熵正则化、示性正则化和GAIL的优化目标,以及如何利用生成对抗网络来逼近专家策略的占用率度量,实现更高效的学习。
摘要由CSDN通过智能技术生成

前文是一些针对IRL,IL综述性的解释,后文是针对《Generative adversarial imitation learning》文章的理解及公式的推导。

  1. 通过深度强化学习,我们能够让机器人针对一个任务实现从0到1的学习,但是需要我们定义出reward函数,在很多复杂任务,例如无人驾驶中,很难根据状态特征来建立一个科学合理的reward。
  2. 人类学习新东西有一个重要的方法就是模仿学习,通过观察别人的动作来模仿学习,不需要知道任务的reward函数。模仿学习就是希望机器能够通过观察模仿专家的行为来进行学习。
  3. OpenAI,DeepMind,Google Brain目前都在向这方面发展。

[1] Model-Free Imitation Learning with Policy Optimization, OpenAI, 2016

[2] Generative Adversarial Imitation Learning, OpenAI, 2016

[3] One-Shot Imitation Learning, OpenAI, 2017

[4] Third-Person Imitation Learning, OpenAI, 2017

[5] Learning human behaviors from motion capture by adversarial imitation, DeepMind, 2017

[6] Robust Imitation of Diverse Behaviors, DeepMind, 2017

[7] Unsupervised Perceptual Rewards for Imitation Learning, Google Brain, 2017

[8] Time-Contrastive Networks: Self-Supervised Learning from Multi-View Observation, Google Brain, 2017

[9] Imitation from Observation/ Learning to Imitate Behaviors from Raw Video via Context Translation, OpenAI, 2017

[10] One Shot Visual Imitation Learning, OpenAI, 2017

模仿学习

  1. 从给定的专家轨迹中进行学习。
  2. 机器在学习过程中能够跟环境交互,到那时不能直接获得reward。
  3. 在任务中很难定义合理的reward(自动驾驶中撞人reward,撞车reward,红绿灯reward),人工定义的reward可能会导致失控行为(让agent考试,目标为考100分,但是reward可能通过作弊的方式)。
  4. 三种方法:
    a. 行为克隆(Behavior Cloning)
    b. 逆向强化学习(Inverse Reinforcement Learning)
    c. GAN引入IL(Generative Adversarial Imitation Learning)
  5. 行为克隆
    有监督的学习,通过大量数据,学习一个状态s到动作a的映射。
    在这里插入图片描述
    但是专家轨迹给定的数据集是有限的,无法覆盖所有可能的情况。如果更换数据集可能效果会不好。则只能不断增加训练数据集,尽量覆盖所有可能发生的状态。但是并不实际,在很多危险状态采集数据成本非常高。
  6. 逆向强化学习
    RL是通过agent不断与environment交互获取reward来进行策略的调整,最终得到一个optimal policy。但IRL计算量较大,在每一个内循环中都跑了一遍RL算法。
    在这里插入图片描述
    IRL不同之处在于,无法获取真实的reward函数,但是具有根据专家策略得到的一系列轨迹。假设专家策略是真实reward函数下的最优策略,IRL学习专家轨迹,反推出reward函数。
    在这里插入图片描述
    得到复原的reward函数后,再进行策略函数的估计。
    RL算法:
    在这里插入图片描述
    IRL算法:
    在这里插入图片描述
    在给定的专家策略后(expert policy),不断寻找reward function来使专家策略是最优的。(解释专家行为,explaining expert behaviors)。具体流程图如下:
    在这里插入图片描述
  7. 生成对抗模仿学习(GAN for Imitation Learning)
    我们可以假设专家轨迹是属于某一分布(distribution),我们想让我们的模型也去预测一个分布,并且使这两个分布尽可能的接近。
    在这里插入图片描述
    算法流程如下:
    在这里插入图片描述
    Discriminator:尽可能的区分轨迹是由expert生成还是Generator生成。
    在这里插入图片描述
    Generator(Actor):产生出一个轨迹,使其与专家轨迹尽可能相近,使Discriminator无法区分轨迹是expert生成的还是Generator生成的。
    在这里插入图片描述
    其算法可以写为:
    在这里插入图片描述

生成对抗模仿学习(Generative Adversarial Imitation Learning)

GAIL能够直接从专家轨迹中学得策略,绕过很多IRL的中间步骤。

逆向强化学习(IRL)

假定cost function的集合为 C \mathcal{C} C π E \pi_E πE为专家策略。带有正则化项 ψ \psi ψ最大熵逆向强化学习是想找到一个cost function似的专家策略的效果优于其余所有策略(cost越小越优):
I R L ψ ( π E ) = arg ⁡ m a x c ∈ C − ψ ( c ) + ( min ⁡ π ∈ Π − H ( π ) + E π [ c ( s , a ) ] ) − E π E [ c ( s , a ) ] \rm{IRL}_{\psi}(\pi_E) = \arg max_{c\in\mathcal{C}} -\psi(c)+(\min_{\pi \in \Pi}- \it {H}(\pi) + \mathbb E_\pi[c(s,a)]) - \mathbb E_{\pi_E}[c(s,a)] IRLψ(πE)=argmaxcCψ(c)+(πΠminH(π)+Eπ[c(s,a)])EπE[c(s,a)]
其中 E π [ c ( s , a ) ] = E [ ∑ t = 0 ∞ γ t c ( s t , a t ) ] \mathbb E_\pi[c(s,a)]=\mathbb E[\sum\limits_{t=0}^\infty \gamma^tc(s_t,a_t)] Eπ[c(s,a)]=E[t=0γtc(st,at)] H ( π ) = E π [ − log ⁡ π ( a ∣ s ) ] H(\pi)=\mathbb E_\pi[-\log \pi(a|s)] H(π)=Eπ[logπ(as)]是一个 γ \gamma γ折扣累积熵。IRL过程中包含一个RL过程:
R L ( c ) = arg ⁡ m i n π ∈ Π − H ( π ) + E π [ c ( s , a ) ] \rm{RL}(c) = \arg min_{\pi \in \Pi} -\it H(\pi)+\mathbb E_\pi [c(s,a)] RL(c)=argminπΠH(π)+Eπ[c(s,a)]

Defination 1.

对于一个策略 π \pi π,定义其占用率度量(occupancy measure) ρ π : S × A → R \rho_\pi:\mathcal{S}\times\mathcal{A}\to \mathbb R ρπ:S×AR
ρ π ( s , a ) = π ( a ∣ s ) ∑ t = 0 ∞ γ t P ( s t = s ∣ π ) \rho_\pi(s,a) = \pi(a|s)\sum\limits_{t=0}^\infty\gamma^tP(s_t=s|\pi) ρπ(s,a)=π(as)t=0γtP(st=sπ)
占用率度量可以近似看做是使用策略 π \pi π时,状态-动作对的分布。 D \mathcal D D是有效的占用率度量的集合。
[1] U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming. In
Proceedings of the 25th International Conference on Machine Learning, pages 1032–1039, 2008. 证明 π ∈ Π \pi \in \Pi πΠ ρ ∈ D \rho\in\mathcal D ρD是一一对应关系。

Lemma 3.1.

ρ ∈ D \rho\in\mathcal D ρD,则 ρ \rho ρ是策略 π ρ = ρ ( s , a ) / ∑ a ′ ρ ( s , a ′ ) \pi_{\rho}=\rho(s,a)/\sum\limits_{a'}\rho(s,a') πρ=ρ(s,a)/aρ(s,a)的占用率度量,并且 π ρ \pi_{\rho} πρ是唯一的。

根据Definition 1,可以将 γ \gamma γ折累计代价写为
E π [ c ( s , a ) ] = ∑ s , a ρ π ( s , a ) c ( s , a ) \mathbb E_\pi[c(s,a)]=\sum\limits_{s,a}\rho_\pi(s,a)c(s,a) Eπ[c(s,a)]=s,aρπ(s,a)c(s,a)

Lemma 3.2.

H ( π ) = E π [ − log ⁡ π ( a ∣ s ) ] H(\pi)=\mathbb E_\pi[-\log\pi(a|s)] H(π)=Eπ[log

生成对抗模仿学习Adversarial Imitation Learning,AIL)是一种结合深度学习和强化学习的方法,能够从专家演示中学习到复杂的行为策略。国内外的研究者们已经对该方法进行了广泛的研究和应用,下面是一些代表性的研究现状: 1. 研究背景 AIL的主要应用场景是在机器人控制、自动驾驶、游戏智能等领域。在这些应用场景中,人类专家可以提供一些演示数据,AIL可以从中学习到复杂的行为策略。 2. 国内研究现状 国内研究者们已经在机器人控制、自动驾驶等领域应用了AIL。例如,清华大学的研究者们在机器人控制领域使用AIL获取了机器人在复杂环境中的行为策略;中科院自动化所的研究者们将AIL应用于自动驾驶领域,从专家演示中学习到了自动驾驶车辆的行为策略。 3. 国外研究现状 国外的研究者们也在机器人控制、自动驾驶、游戏智能等领域应用了AIL。例如,斯坦福大学的研究者们使用AIL训练了一个机器人,使其在复杂环境中可以有效地避免障碍物;加州大学伯克利分校的研究者们将AIL应用于自动驾驶领域,学习到了自动驾驶车辆的行为策略;OpenAI的研究者们使用AIL训练了一个游戏AI,使其可以在游戏中获得高得分。 综上所述,AIL是一种强大的学习方法,在机器人控制、自动驾驶、游戏智能等领域应用广泛,国内外研究者们已经取得了很多有意义的研究成果。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值