Self-supervised Trajectory Representation Learning with Temporal Regularities and Travel Semantics

本文提出了一种结合时空特征和旅行语义的轨迹分析方法,使用两阶段学习和TPE-GAT图注意力网络,通过路段转移概率和时间规则性信息,对轨迹数据进行建模。预训练任务包括连续掩码预测和轨迹对比学习,以提升模型的时空特征理解和旅行模式捕捉。下游任务涉及出行时间预测、轨迹分类等。
摘要由CSDN通过智能技术生成

1.背景

  • 早期的TRL将轨迹视为普通序列数据,不能完全捕捉轨迹的时空语义信息
  • 现有的两阶段方法
    • 只对静态道路图进行建模,没有结合旅行语义,如路段间的转移概率
    • 将轨迹视为位置序列,没有考虑时间信息
    • 预训练任务重没有考虑轨迹的时空特征
      • 序列重建
      • MLM

2.方法

  • 采用两阶段学习方法
    • 轨迹模式增强图注意力网络
      • 以道路特征作为输入
      • 使用路段转移概率矩阵来建模道路访问频率
      • 这样道路特征的旅行语义和访问频率都会被融入到道路表征中
    • 将道路表征序列转换为轨迹表征
      • 结合时间规则性信息

3.模型

在这里插入图片描述

3.1 轨迹模式增强的图注意层 TPE-GAT
  • 功能:将路网转换为融合轨迹旅行语义的表征向量

  • 轨迹受到道路网络连通性的约束,因此需要从道路特征和网络结构来学习道路表征向量。

  • 标准的GAT无法捕捉轨迹中的旅行模式

    • 引入路段之间的概率转移矩阵来模拟路段访问频率,扩展了GAT的注意力权重计算
  • 输入

    • 路段特征 F V \mathbf{F}_{\mathcal{V}} FV
      • 道路类型、道路长度、车道数、限速、入度、出度
      • 做cat操作作为路段的初始表征向量
  • l l l层路段 v i v_i vi v j v_j vj的注意力权重 α i j \alpha_{ij} αij计算

在这里插入图片描述

  • h i h_i hi h j h_j hj分别表示路段 v i , v j v_i,v_j vi,vj的表征向量

  • p i j t r a n s p_{ij}^{trans} pijtrans v i v_i vi v j v_j vj的转移概率

  • 输出:路段特征向量 r i \mathbf{r}_i ri

在这里插入图片描述

  • H 1 H_1 H1是注意力神经元数量,即"头"
  • ∣ ∣ || ∣∣是cat操作
3.2 时间感知轨迹编码层
  • 功能:结合时间规律信息,将路段表征序列转变为轨迹表征
3.2.1 轨迹时间模式抽取模块
  • 将路段 v i v_i vi的每个时间戳 t i t_i ti嵌入为 t m i ( t i ) \mathbf{t}_{mi(t_i)} tmi(ti) t d i ( t i ) \mathbf{t}_{di(t_i)} tdi(ti)

    • 其中 m i ( t i ) mi(t_i) mi(ti) d i ( t i ) di(t_i) di(ti)分别是将 t i t_i ti转换为分钟序号(1-1440)和序号(1-7)的函数
  • 得到 v i v_i vi的最终embedding

在这里插入图片描述

  • r i \mathbf{r}_i ri:路段特征向量

  • p e i \mathbf{pe}_i pei v i v_i vi在轨迹的位置编码

  • 输出:轨迹的初始表征向量——通过concat所有经过路段的 x i \mathbf{x}_i xi

3.2.2 时间间隔感知的自注意模块
  • 路段之间的不规则时间间隔,可以反映道路的拥堵程度

在这里插入图片描述

  • Δ ~ \tilde \Delta Δ~是一个自适应的时间间隔矩阵,衡量轨迹路段间的影响

  • v i v_i vi v j v_j vj之间的时间间隔较短时, δ i j ∈ Δ ~ \delta_{ij} \in \tilde \Delta δijΔ~有较大值,即这两条路在自注意中具有较强的影响

  • δ i j \delta_{ij} δij的计算方法

    • δ i , j = ∣ t i − t j ∣ \delta_{i,j}=|t_i-t_j| δi,j=titj

    • 为了让影响随着时间间隔的增加而变小,引入衰减函数

      • δ i , j ′ = 1 / l o g ( e + δ i , j ) \delta_{i,j}'=1/log(e+\delta_{i,j}) δi,j=1/log(e+δi,j)
    • 加入可学习参数

在这里插入图片描述

4.预训练任务

  • 连续掩码预测

    • 同上一篇

    • [ M A S K ] [MASK] [MASK]替换 v i v_i vi [ M A S K T ] [MASKT] [MASKT]替换时间索引

    • 获得轨迹的预测向量后,经过一个全连接层预测遮盖的道路

    • 使用交叉熵作为loss

在这里插入图片描述

  • 轨迹对比学习

    • 掩码预测侧重于捕捉道路上下文信息,还需要训练时空特征和旅行语义
    • 数据增强策略
      • 轨迹剪裁——在起点和终点进行裁剪(不破坏轨迹连续性和行进语义)——真的可以不破坏吗?
      • 时间扰动
      • mask
      • Dropout——在嵌入层随机去掉一些特征(还是作为正样本)

5.下游任务

  • 出行时间预测——全连接
  • 轨迹分类——全连接+softmax
  • 轨迹相似度计算和搜索
自我监督学习是一种机器学习方法,通过对数据进行合理的预测任务,从中获得有用的表示。与传统的监督学习不同,自我监督学习不需要人工标注的标签来指导训练,而是利用数据自身的信息进行训练。 自我监督学习的基本思想是从未标记的数据中构造有意义的标签,然后将这些标签用作训练数据,以学习有用的特征表示。通过对输入数据进行某种形式的变换或遮挡,可以生成一对相关的样本。其中一个样本称为正样本,另一个则被视为负样本。例如,在图像领域中,可以通过将图像进行旋转、裁剪或遮挡等变换来生成正负样本对。模型的目标是通过学习从一个样本到另一个样本的映射,从而使得正样本对之间的相似度更高,负样本对之间的相似度更低。 自我监督学习在许多任务中都取得了很好的效果。例如,在自然语言处理任务中,可以通过遮挡句子中的某些单词或短语来生成正负样本对,然后通过学习从一个句子到另一个句子的映射来进行训练。在计算机视觉任务中,可以通过图像的旋转、裁剪、遮挡或色彩变换等方式来生成正负样本对。 自我监督学习的优点是不需要人工标注的标签,可以利用大量的未标记数据来进行训练,从而扩大训练数据的规模。此外,自我监督学习还可以通过学习到的特征表示来提高其他任务的性能,如分类、目标检测和语义分割等。 总之,自我监督学习是一种有效的无监督学习方法,通过构造有意义的预测任务,从未标记的数据中学习有用的特征表示。它在各种任务中都有广泛的应用,并具有很高的潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值