1,定义
若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量
$$
△y=f(x+△x)-f(x)
$$
可以表示为
$$
△y=f'(x)·△x+o(△x)
$$
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,
微分dy可以近似地表示为
$$
dy=f'(x)△x
$$
,它描述了函数值y随自变量x变化而变化的线性部分。
eg1
正方形的面积公式为:
$$
y=x^{2}
$$
假设正方形的初始边长x=a,然后在a的基础上边长增加一个非常小的改变量△x,此时正方形的边长x=a+△x,正方形增加的面积:
$$
△y=f(a+△x)-f(a)=(a+△x)^{2}-a^{2}=2a.△x+△x^{2}
$$
由于△x非常小,所以△x^2可以看作是△x的高阶无穷小,即O(△x),所以:
$$
△y=2a△x+O(△x)
$$
等式两边同除以△x:
$$
\dfrac{△y}{△x}=2a+\dfrac{O(△x)}{△x}
$$
求极限:
$$
\lim _{△x\rightarrow 0}\dfrac{△y}{△x}=\lim _{△x\rightarrow 0}(2a+\dfrac{O(△x)}{△x})=2a
$$
极限存在,所以函数可导,即:
$$
f'(a)=2a
$$
完整等式可表示为:
$$
△y=f'(a)△x+O(△x)
$$
因此,微分dy可以近似地表示为
$$
dy=f'(a)△x或dy=f'(a)dx
$$
注意:△y是精确值,dy是近似值。
2.可微的充要条件
函数 f(x) 在点 x=a 处可微的充要条件是:
1. 函数在点 x=a处连续:
$$
\lim _{x\rightarrow a}f(x)=f(a)
$$
2. 函数在点 x=a 处左右导数存在且相等:
$$
f'_{-}(a)=f'_{+}(a)
$$
简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。
3.微分公式与法则
根据微分定义
$$
dy=f'(x)dx
$$
可知,求微分实际上就是求导数,所以微分公式同求导公式
eg2
假设方程为
$$
y=e^{1-3x}cosx
$$
求dy。
解:
先求导数:
$$
y'=(e^{1-3x})'cosx + e^{1-3x}(cosx)'=e^{1-3x}(1-3x)'cosx-e^{1-3x}sinx=-3e^{1-3x}cosx-e^{1-3x}sinx=-e^{1-3x}(3cosx+sinx)
$$
则:
$$
dy=y'dx=-e^{1-3x}(3cosx+sinx)dx
$$
4.微分的几何意义
假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
$$
△y=f(x_{0}+△x)-f(x_{0})
$$
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
$$
dy=f'(x_{0})△x
$$
f'(x)是切线的斜率,dy是△y的近似值,如上图所示,所以
$$
△y\approx f'(x_{0})△x\\
f(x_{0}+△x)=△y+f(x_{0})\approx f'(x_{0})△x+f(x_{0})
$$
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。
eg3
求
$$
\sin ( 30^{o}30')
$$
解:
$$
30^{o}30'=\dfrac{\pi}{6} + \dfrac{\pi}{360}
$$
根据分析可知:
$$
x_{0}=\dfrac{\pi}{6},△x=\dfrac{\pi}{360}
$$
根据微分公式:
$$
f(x_{0}+△x)\approx f'(x_{0})△x+f(x_{0})=cosx_{0}△x+sinx_{0}=(cos\dfrac{\pi}{6})\dfrac{\pi}{360}+sin\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}.\dfrac{\pi}{360}+\dfrac{1}{2}=\dfrac{1}{2}+\dfrac{\sqrt{3}\pi}{720}
$$
常用的近似公式
当x->0,
$$
(1+x)^{\alpha }\approx 1+\alpha x\\
sinx \approx x\\
tanx \approx x\\
e^{x} \approx 1+x\\
ln(1+x) \approx x
$$
5.微分中值定理
5.1罗尔定理
如果函数 f(x)满足以下条件:
1. 在闭区间 [a,b]上连续。
2. 在开区间 (a,b)上可导。
3. 在区间端点的函数值相等,即 f(a)=f(b)。
那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0
罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。
5.2拉格朗日中值定理
如果函数 f(x)满足以下条件:
1. 在闭区间 [a,b] 上连续。
2. 在开区间 (a,b)上可导。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
$$
f′(c)=\dfrac{f(b)−f(a)}{b−a}
$$
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
5.3柯西中值定理
如果函数 f(x) 和 g(x) 满足以下条件:
1. 在闭区间 [a,b]上连续。
2. 在开区间 (a,b)上可导。
3. 在开区间 (a,b) 内,g′(x)≠0。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
$$
\dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)}
$$
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
怎么理解柯西中值定理?
将f(x)和g(x)看作是参数方程:
$$
\begin{cases}x=f(t)\\
y=g(t)\end{cases}
$$
$$
\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g'(t)}{f'(t)}
$$
a、b端点连线的斜率为:
$$
\dfrac{g(b)-g(a)}{f(b)-f(a)}
$$
根据拉格朗日中值定理可知,至少存在一点c,使得该点处的切线斜率等于区间端点连线的斜率,即:
$$
\dfrac{g'(t)}{f'(t)}=\dfrac{g(b)-g(a)}{f(b)-f(a)}
$$
5.4洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数 f(x)和 g(x 满足以下条件:
1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。
2. $$
\lim _{x\rightarrow a}f(x)=0 且 \lim _{x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。
$$
如果
$$
\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
$$
存在(或为无穷大),那么:
$$
\lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
$$
eg4
求极限
$$
\lim _{x\rightarrow 0}\dfrac{sinx}{x}
$$
解:
1. 验证不定型:
$$
\lim _{x\rightarrow 0}sinx=0,\lim _{x\rightarrow 0}x=0
$$
这是一个 0/0 型不定型。
2. 应用洛必达法则:
$$
\lim _{x\rightarrow 0}\dfrac{sinx}{x}=\lim _{x\rightarrow 0}\dfrac{\dfrac{d}{dx}(sinx)}{\dfrac{d}{dx}(x)}=\lim _{x\rightarrow 0}\dfrac{cosx}{1}=cos0=1
$$
eg5
求极限
$$
\lim _{x\rightarrow \infty}\dfrac{lnx}{x}
$$
解:
$$
\lim _{x\rightarrow \infty}lnx=\infty,\lim _{x\rightarrow \infty}x=\infty
$$
这是一个 ∞/∞ 型不定型。
应用洛必达法则:
$$
\lim _{x\rightarrow \infty}\dfrac{lnx}{x}=\lim _{x\rightarrow \infty}\dfrac{\dfrac{d}{dx}(lnx)}{\dfrac{d}{dx}(x)}=\lim _{x\rightarrow \infty}\dfrac{1}{x}=0
$$
6.函数的单调性
6.1递增函数:
如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。
6.2递减函数:
如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。
eg6
函数
$$
f(x)=x^{3}−3x
$$
在区间 (−2,2)上的单调性
解:
求导:
$$
f'(x)=3x^{2}-3
$$
计算斜率为0的驻点:
$$
3x^{2}-3=0=>x=1或x=-1
$$
在区间(-2,-1)
$$
f'(x)=3x^{2}-3>0
$$
在该区间是递增的
在区间(-1,1)
$$
f'(x)=3x^{2}-3<0
$$
在该区间是递减的
在区间(1,2)
$$
f'(x)=3x^{2}-3>0
$$
在该区间是递增的
7.函数的凹凸性
7.1 函数凹凸性判定
函数的凹凸性可以通过其二阶导数来判定:
1)凹函数:
如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。
2)凸函数:
如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 x*x*,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。
7.2拐点
拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。
eg7
求函数
$$
f(x)=x^{3}−3x
$$
在区间 (−2,2)上的凹凸性
解:
求二阶导数:
$$
f''(x)=6x
$$
求二阶导数驻点:
$$
6x=0=>x=0
$$
在区间(-2,0)
$$
f''(x)=6x<0
$$
在该区间f(x)是凸的
在区间(0,2)
$$
f''(x)=6x>0
$$
在该区间f(x)是凹的
由于 f′′(x)在 x=0 的两侧符号相反,所以 x=0是函数的拐点。
8.极值
极值
是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。
最值
最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。
8.1极值的充分必要条件
必要条件
如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。
充分条件
一阶导数判定法
1. 局部极大值:
如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。
2. 局部极小值:
如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。
二阶导数判定法
1. 局部极大值:
如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。
2. 局部极小值:
如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。
eg8
求函数
$$
f(x)=x^{3}−3x
$$
在区间 [−2,2]上的极值
解:
方式一:
1.求一阶导数:
$$
f'(x)=3x^{2}-3
$$
2.求驻点:
$$
3x^{2}-3=0=>x=1或x=-1
$$
x=1或x=-1都在区间[-2,2]内。
3.判断左右导数的符号:
在x=1处:
$$
f'_{-}(1)<0,f'_{+}(1)>0
$$
所以x=1是局部极小值点,极小值为
$$
f(1)=1^{3}-3=-2
$$
在x=-1处:
$$
f'_{-}(1)>0,f'_{+}(1)<0
$$
所以x=-1是局部极大值点,极大值为
$$
f(-1)=(-1)^{3}+3=2
$$
方式二:
1.求一阶导数:
$$
f'(x)=3x^{2}-3
$$
2.求驻点:
$$
3x^{2}-3=0=>x=1或x=-1
$$
3.根据二阶导数判定:
在x=1处:
$$
f''(1)=6>0
$$
表示函数在x=1邻域是凹的,所以x=1是局部极小值点,极小值为
$$
f(1)=1^{3}-3=-2
$$
在x=-1处:
$$
f''(-1)=-6<0
$$
表示函数在x=1邻域是凸的,所以x=1是局部极大值点,极大值为
$$
f(-1)=(-1)^{3}+3=2
$$