数学基础-高数day2-1定积分

求解函数在某个区间上的累积效应或面积。

1.定义

定积分

$$
∫_{a}^{b}f(x) dx
$$

表示函数 f(x)在区间 [a,b]上的累积效应或面积。定积分的定义可以通过以下步骤来理解:

  1. 分割区间: 将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中

    $$
    Δx_{i}=x_{i}−x_{i−1}
    $$

     

    ,且 x0=a,xn=b。

  2. 取样本点: 在每个小区间

    $$
    [x_{i−1},x_{i}]
    $$

     

    内取一个样本点 ξi。

  3. 构造黎曼和: 构造黎曼和

    $$
    \sum _{i=1}^{n}f(ξ_{i})Δx_i
    $$

     

    ,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。

  4. 取极限: 当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:

    $$
    ∫_{a}^{b}f(x) dx=\lim _{n\rightarrow \infty}\sum _{i=1}^{n}f(ξ_{i})Δx_{i}
    $$

说明:

黎曼和是通过将区间 [a,b]分成 n 个等宽的子区间,每个子区间的宽度为

$$
Δx=\dfrac{b−a}{n}
$$

,然后选择每个子区间内的一点 xi,计算矩形的面积之和来近似积分的。

黎曼和可以表示为:

$$
S_n=∑_{i=1}^nf(x_i)Δx
$$

其中:

  • Sn是黎曼和的值。

  • n是子区间的数量。

  • xi是第 i个子区间 [xi−1,xi]内的一点。

  • Δx是每个子区间的宽度。

2.几何意义

定积分

$$
∫_{a}^{b}f(x) dx
$$

的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:

  • 如果 f(x)≥0,则定积分表示曲线下方的面积。

  • 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。

3.性质

定积分具有以下重要性质:

  1. 线性性质:

    $$
    ∫_{a}^{b}[cf(x)+dg(x)] dx=c∫_{a}^{b}f(x) dx+d∫_{a}^{b}g(x) dx
    $$

     

    其中 c 和 d 是常数。

  2. 区间可加性:

    $$
    ∫_{a}^{b}f(x) dx=∫_{a}^{c}f(x) dx+∫_{c}^{b}f(x) dx
    $$

     

    其中 a≤c≤b。

  3. 积分上下限交换:

    $$
    ∫_{a}^{b}f(x) dx=−∫_{b}^{a}f(x) dx
    $$

  4. 定积分中值定理

    如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:

$$
∫_{a}^{b}f(x) dx=f(c)(b−a)
$$

证明:

设f(x)在[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。

$$
m\leq f(x)\leq M
$$

两边同时积分可得:

$$
m(b-a)\leq \int _{a}^{b}f(x)dx\leq M(b-a)
$$

同除以b-a从而得到:

$$
m\leq \dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx\leq M
$$

由连续函数的介值定理可知,必定

$$
\exists c\in [a,b]
$$

,使得

$$
f(c)=\dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx
$$

,即:

$$
\int _{a}^{b}f(x)dx=f(c)(b-a),\exists c\in [a,b]
$$

4.微积分基本公式

牛顿-莱布尼茨公式

$$
∫_{a}^{b}f(x)dx=F(b)−F(a)
$$

$$
其中,F(x)是 f(x)的一个原函数,即 F′(x)=f(x)。
$$

微积分基本定理

微积分基本定理分为两部分,分别描述了积分上限函数的性质和定积分的基本公式。

第一部分(Part 1)

如果 f(t) 在区间 [a,b]上连续,则积分上限函数

$$
F(x)=∫_{a}^{x}f(t) dt
$$

在区间 [a,b] 上可导,并且其导数为:

$$
F′(x)=f(x)
$$

第一基本定理表明不定积分是微分的逆运算,保证了某连续函数的原函数的存在性。

第二部分(Part 2)

如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:

$$
∫_{a}^{b}f(x) dx=F(b)−F(a)
$$

第二基本定理则提供了定积分和不定积分之间的联系,使得定积分的计算变得简便。

例子

1.求

$$
\int _{0}^{1}x^{2}dx
$$

解:

$$
\int _{0}^{1}x^{2}dx=\dfrac{1}{3}x^{3}|_{0}^{1}=\dfrac{1}{3}-0=\dfrac{1}{3}
$$

2.求

$$
\int _{-2}^{-1}\dfrac{1}{x}dx
$$

解:

$$
\int _{-2}^{-1}\dfrac{1}{x}dx=ln{|x|}|_{-2}^{-1}=ln1-ln2=-ln2
$$

5.定积分换元法

步骤

  1. 选择合适的变量替换: 选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:

$$
x=g^{-1}(t)=h(t)
$$

  1. 求导数: 对 x 的导数

$$
dx=h'(t)dt
$$

  1. 替换积分变量: 将原积分中的 x 替换为 t,并将 dx 替换为

$$
h'(t)dt
$$

  1. 确定新的积分上下限: 将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。

  2. 求解新积分: 求解新的定积分

$$
∫_{t_{1}}^{t_{2}}f(h(t)) h'(t)dt
$$

例子

$$
\int _{0}^{4}\dfrac{x+2}{\sqrt{2x+1}}dx
$$

解:

1.变量替换:

$$
t=\sqrt{2x+1}
$$

$$
x=\dfrac{t^{2}-1}{2}
$$

2.对x求导数:

$$
dx=tdt
$$

3.确定t的上下限:

下限:

$$
t_{1}=\sqrt{0+1}=1
$$

上限:

$$
t_{2}=\sqrt{2\times 4 + 1}=3
$$

4.求解新的定积分:

$$
\int _{1}^{3}\dfrac{\dfrac{t^{2}-1}{2}+2}{t}tdt=\int _{1}^{3}\dfrac{t^{2}+3}{2}dt=\dfrac{1}{2}(\dfrac{1}{3}t^{3}+3t)|_{1}^{3}=\dfrac{22}{3}
$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值