定积分
定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。
1.定义
定积分
表示函数 f(x)在区间 [a,b]上的累积效应或面积。
2.几何意义
定积分的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:
-
如果 f(x)≥0,则定积分表示曲线下方的面积。
-
如果 f(x)≤0,则定积分表示曲线上方的面积的负值。
3.性质
定积分具有以下重要性质:
1、线性性质:
其中 c 和 d 是常数。
2、区间可加性:
其中 a≤c≤b。
3、积分上下限交换:
4、定积分中值定理
如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:
4.微积分基本公式
牛顿-莱布尼茨公式
积分上限函数
如果 f(t) 在区间 [a,b]上连续,则积分上限函数
在区间 [a,b] 上可导,并且其导数为:
5.定积分换元法
步骤
1、选择合适的变量替换: 选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:
2、求导数: 对 x 的导数
3、替换积分变量: 将原积分中的 x 替换为 t,并将 dx 替换为
4、确定新的积分上下限: 将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。
5、求解新积分: 求解新的定积分
多元函数
1.二元极限
定义
设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当
时,总有:∣f(x,y)−L∣<ϵ,则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
几何意义
当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。
如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。
2.偏导数
偏导数是多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。
这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。
定义
设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:
存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:
类似地,如果极限:
存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:
偏导数的计算方法
对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。
3.全微分
定义
如果函数z=f(x, y)在点(x, y)处的全增量
可以表示为
,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。
可微的必要条件条件
若z=f(x,y)在(x,y)点处可微,则偏导数
存在,并且
可微的充分条件
z=f(x,y)在(x,y)的某个邻域内有连续的偏导数
则在(x,y)处可微,
4.梯度
梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。
定义
设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
其中,
是函数 f 在点 a 处对第 i 个自变量的偏导数。
性质
-
最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
-
变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。
沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。
梯度下降
梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。
5.二重积分
二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。
定义
设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:
其中 dA表示面积元素。
几何意义
如果 f(x,y)是非负函数,二重积分
表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。
二重积分的计算步骤-直角坐标系
在直角坐标系下,二重积分可以表示为两个定积分的乘积:
其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。
-
确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。
-
设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。
-
写出积分表达式:根据积分限写出二重积分的表达式:
4. 计算内层积分:先对 y 进行积分,得到关于 x 的表达式。
5. 计算外层积分:再对 x 进行积分,得到最终的积分值。
二重积分的计算步骤-极坐标系
极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。