基于贝叶斯优化的lstm神经网络(matlab)前瞻

长短期记忆网络(Long Short-Term Memory, LSTM)是循环神经网络(Recurrent Neural Network, RNN)的一种,专门设计来解决RNN在处理长序列数据时出现的梯度消失或梯度爆炸问题。LSTM通过引入一种复杂的门控机制来调节信息的流动,有效地保留了长期依赖关系,并允许模型在必要时忘记无关信息。

LSTM的结构

LSTM单元的核心是细胞状态(Cell State),它像是一条传送带,贯穿整个链条,只有轻微的线性交互。这使得信息可以几乎不变地流动通过整个序列。除了细胞状态,LSTM单元还包含三个门控结构,用于控制信息的流入流出:

  1. 遗忘门(Forget Gate):决定哪些信息应该被丢弃或保留。它查看前一个时间步的隐藏状态和当前的输入,通过一个Sigmoid函数输出一个介于0到1之间的值给每个在细胞状态中的数。1表示“完全保留”,0表示“完全丢弃”。

  2. 输入门(Input Gate):决定哪些新的信息将被添加到细胞状态中。首先,一个Sigmoid层决定哪些值我们将要更新,然后一个tanh层创建一个新的候选值向量,可以被添加到状态中。

  3. 输出门(Output Gate):决定下一个隐藏状态的值。隐藏状态包含关于先前输入的信息,也会用于预测或者决策。首先,使用Sigmoid层决定细胞状态的哪个部分将被输出,然后将细胞状态通过tanh(得到一个介于-1到1之间的值)并乘以Sigmoid门的输出,这样就只会输出我们想要的部分。

LSTM的应用

LSTM非常适合于分类、处理和预测基于时间序列的任务,因为它可以考虑到序列时间的长距离依赖信息。因此,它们在许多领域都有广泛的应用,例如:

  • 自然语言处理(NLP)、语言模型和文本生成。
  • 语音识别。
  • 时间序列预测。
  • 音乐生成。

LSTM的优点

  • 能够处理长期依赖问题。
  • 能够在不同的时间尺度上处理数据。
  • 提供了忘记无关信息的机制。

贝叶斯优化:

贝叶斯优化(Bayesian Optimization)是一种全局优化算法,用于在黑盒函数的优化问题中找到最小值。这种方法在实际应用中非常有效,特别是在目标函数很复杂、评估代价高昂或者不可导的情况下。贝叶斯优化在机器学习模型的超参数调优、工程设计以及其他需要代价昂贵的函数评估的问题中非常有用。

贝叶斯优化背后的关键思想是利用贝叶斯统计方法对目标函数的性质(如函数形状、最大值和最小值等)进行建模,并将这种不确定性用于指导搜索过程,从而有效地找到全局最小值。

贝叶斯优化的主要组成部分:

  1. 先验分布:在开始优化之前,对目标函数的先验知识进行编码。这通常通过选择一个先验概率分布来完成,比如高斯过程(Gaussian Process, GP)是一种常用的选择。

  2. 似然函数:在观测到数据后,似然函数用来更新对目标函数的认识。

  3. 后验分布:结合先验分布和新的观测数据,使用贝叶斯定理来更新对目标函数的认识。在贝叶斯优化中,这通常通过更新高斯过程的后验来完成。

  4. 采集函数(Acquisition Function):它是一种用来在探索(寻找全局最优解)和利用(在已知较好的区域精细搜索)之间取得平衡的策略。常见的采集函数有期望改善(Expected Improvement)、最大概率改善(Probability of Improvement)和上置信界(Upper Confidence Bound)。

优化流程:

  1. 初始化:通过随机选择几个样本点开始,并对这些点评估目标函数。

  2. 更新先验:将观测结果用高斯过程来更新目标函数的后验分布。

  3. 优化采集函数:在后验分布的指导下,选择一个新的样本点,这个样本点能够根据采集函数优化目标函数的预期结果。

  4. 采样并更新:在新的样本点上评估目标函数,并将结果反馈到模型中,更新后验分布。

  5. 迭代:重复步骤3和4,直到满足停止条件,比如达到最大迭代次数、超过预算或进展停滞不前。

优势与局限:

  • 优势:相对于其他全局优化方法,贝叶斯优化非常适合在样本点评估代价很高时使用,因为它在每次迭代中都尽可能地提取了目标函数的最大信息量。此外,它还可以自然地处理噪声数据和非凸问题。

  • 局限:贝叶斯优化的计算代价随着采样点的增加而增长,因为高斯过程的更新是计算密集型的。此外,贝叶斯优化的性能也依赖于先验和高斯过程模型的选择。

贝叶斯优化通过构建LSTM超参数的概率模型,预测哪一组超参数能够给出更好的性能。整个过程遵循以下步骤:

  1. 定义超参数空间:明确哪些LSTM超参数将被优化,如学习率、隐藏单元数量等,并为这些参数定义合理的搜索范围或分布。

  2. 选择先验模型:通常使用高斯过程(GP)作为先验,因为它能够很好地估计超参数与目标性能之间的关系。

  3. 优化采集函数:采集函数如期望改善(EI)用于在探索(尝试未知区域的超参数)和利用(在已知好的区域寻找更好的超参数)之间平衡。通过优化采集函数来选择下一个评估的超参数集合。

  4. 更新模型:用新获得的超参数评估结果更新高斯过程模型,即反馈LSTM模型的性能来调整GP对超参数空间的理解。

  5. 迭代:重复步骤3和4,直至达到预定义的迭代次数,或者性能提升不再显著。

优点:

  • 自动化和高效:减轻了手动调参的负担,同时比网格搜索和随机搜索更加高效,尤其是在评估代价高昂时。

  • 全局搜索能力:贝叶斯优化有较好的全局搜索能力,能够在较大的参数空间中找到全局最优或接近全局最优的解。

局限:

  • 计算代价:随着评估次数的增加,更新高斯过程模型的计算代价也会增加。

  • 模型选择和假设:贝叶斯优化的性能很大程度上依赖于所选择的模型和假设,如果模型和实际情况不匹配,可能导致不理想的结果。

 

 

  • 13
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值