大模型实践总结

随着ChatGPT的迅速出圈,加速了大模型时代的变革。对于以Transformer、MOE结构为代表的大模型来说,传统的单机单卡训练模式肯定不能满足上千(万)亿级参数的模型训练,这时候我们就需要解决内存墙和通信墙等一系列问题,在单机多卡或者多机多卡进行模型训练。

最近一段时间,我也在探索大模型相关的一些技术,下面做一个简单的总结。

大模型实践文章

下面是最近大模型实践过程中的一些文章,配套代码放置在GitHub:llm-action

LLM训练:

LLM 预训练/微调/RLHF... 参数 教程 代码
Alpaca full fine-turning 7B 从0到1复现斯坦福羊驼(Stanford Alpaca 7B) N/A
Alpaca lora 7B 1. 足够惊艳,使用Alpaca-Lora基于LLaMA(7B)二十分钟完成微调,效果比肩斯坦福羊驼
2. 使用 LoRA 技术对 LLaMA 65B 大模型进行微调及推理
配套代码
BELLE(LLaMA-7B/Bloomz-7B1-mt) full fine-turning 7B 1. 基于LLaMA-7B/Bloomz-7B1-mt复现开源中文对话大模型BELLE及GPTQ量化
2. BELLE(LLaMA-7B/Bloomz-7B1-mt)大模型使用GPTQ量化后推理性能测试
N/A
ChatGLM lora 6B 从0到1基于ChatGLM-6B使用LoRA进行参数高效微调 N/A
ChatGLM full fine-turning/P-Tuning v2 6B 使用DeepSpeed/P-Tuning v2对ChatGLM-6B进行微调 N/A
Vicuna full fine-turning 7B 大模型也内卷,Vicuna训练及推理指南,效果碾压斯坦福羊驼 N/A
OPT RLHF N/A 1. 一键式 RLHF 训练 DeepSpeed Chat(一):理论篇
2. 一键式 RLHF 训练 DeepSpeed Chat(二):实践篇
N/A
MiniGPT-4 full fine-turning 7B 大杀器,多模态大模型MiniGPT-4入坑指南 N/A
Chinese-LLaMA-Alpaca lora(预训练+微调) 7B 使用 LoRA 技术对 LLaMA 65B 大模型进行微调及推理 配套代码

LLM推理:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值