鸢尾花数据集
ris鸢尾花数据集是一个经典的数据集。
包含3类共150条记录,每类各50项数据,每一条记录都有四个体征。
可以通过这四个特征来预测鸢尾花属于哪一个品种。
类别说明
LogisticRegression
1.LogisticRegression(逻辑回归)说明
逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。
2.LogisticRegression回归模型在Sklearn中的使用
导入模型
from sklearn.linear_model import LogisticRegression #导入逻辑回归模型
②fit()训练
调用fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型
clf = LogisticRegression()
print(clf)
clf.fit(train_feature,label)
③predict()预测
利用训练得到的模型对数据集进行预测,返回预测结果
predict['label'] = clf.predict(predict_feature)
LogisticRegression回归模型参数说明
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='liblinear', tol=0.0001