鸢尾花线性多分类练习

本文通过鸢尾花数据集介绍LogisticRegression在机器学习中的应用。使用该模型进行线性多分类,分别选取不同特征进行训练和预测,并展示了分类结果的图像。
摘要由CSDN通过智能技术生成

鸢尾花数据集

ris鸢尾花数据集是一个经典的数据集。

包含3类共150条记录,每类各50项数据,每一条记录都有四个体征。

可以通过这四个特征来预测鸢尾花属于哪一个品种。
类别说明
在这里插入图片描述

LogisticRegression

1.LogisticRegression(逻辑回归)说明
逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。

2.LogisticRegression回归模型在Sklearn中的使用
导入模型

from sklearn.linear_model import LogisticRegression  #导入逻辑回归模型 

②fit()训练
调用fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型

clf = LogisticRegression()
print(clf)
clf.fit(train_feature,label)

③predict()预测
利用训练得到的模型对数据集进行预测,返回预测结果

predict['label'] = clf.predict(predict_feature)

LogisticRegression回归模型参数说明

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值