AI 编程私有化部署,在使用 cline 时,可能无法避免私隐的泄漏问题

摘录:Cline Privacy Policy 

 https://github.com/cline/cline/blob/main/docs/PRIVACY.md 

Key Points

  • Cline operates entirely client-side as a VS Code extension
  • No code or data is collected, stored, or transmitted to Cline's servers

问题是:Cline 会将用户的代码,通过 API 发送到 Claude 的服务器(需要用户的许可。但在实际工作中,却很难做到每次都不会因为误操作而产生的代码泄漏吧?)

Cline 能够保证的只是它自己,却无法、也没有资格去保证 Claude 不会收集用户的信息吧?

也许 Claude 会保证自己的收费用户信息不被采集,但是,免费的用户呢?

即使 AI 编程采用私有化部署,在使用 cline 时,可能还是无法避免私隐的泄漏?除非禁用掉 claude ,并且断网,但断网有时是不现实的。

除了闭源世界,在开源世界里,Cline 可能也是一个不错的选择?

Cline - Autonomous Coding Agent for VSCode   Cline - Autonomous Coding Agent for VSCode

Agent:代理,智能体?概念释义烂掉了?

Hi, I'm Cline : 安全吗 1 ?

翻译 I can do all kinds of tasks thanks to the latest breakthroughs in Claude 3.5 Sonnet's agentic coding capabilities and access to tools that let me create & edit files, explore complex projects, use the browser, and execute terminal commands (with your permission, of course). I can even use MCP to create new tools and extend my own capabilities. To get started, this extension needs an API provider for Claude 3.5 Sonnet.

得益于Claude 3.5 Sonnet在代理编码功能上的最新突破,以及能够让我创建和编辑文件、探索复杂项目、使用浏览器和执行终端命令(当然,是在您允许的情况下)的工具,我可以完成各种各样的任务。我甚至可以使用MCP来创建新的工具并扩展我自己的能力。要开始使用,此扩展需要为Claude 3.5 Sonnet提供一个API提供商。

翻译 While Cline currently requires you bring your own API key, we are working on an official accounts system with additional capabilities. Subscribe to our mailing list to get updates!

虽然Cline目前要求您自带API密钥,但我们正在开发一个具备额外功能的官方账户系统。请订阅我们的邮件列表以获取最新更新!v

Model Context Protocol (MCP) : 安全吗 2 ?

  Cline - Autonomous Coding Agent for VSCode  

MCP servers are like plugins that extend Cline's powers, letting it:

  • Connect to web services (like GitHub)
  • Control browsers
  • Access databases
  • Automate tasks
  • Handle project management
  1. Find a server:
  2. Add with Cline:
    • Just say: "Cline, add the MCP server from [GitHub URL]"
    • Cline handles the rest (cloning, building, config)

需要关闭此功能,并且自行保证不会误操作而打开了此功能?以及软件的作者也不会因为错误的代码而?这在实际操作中,其实是不容易的。

“添加一个工具……” :全部有机器来自动完成?怎样手动关闭? 以及浏览这些设置?

  https://github.com/cline/cline/blob/main/locales/zh-cn/README.md 

感谢 Model Context Protocol,Cline 可以通过自定义工具扩展他的能力。虽然你可以使用 社区制作的服务器,但 Cline 可以创建和安装适合你特定工作流程的工具。只需让 Cline “添加一个工具”,他将处理所有事情,从创建新的 MCP 服务器到将其安装到扩展中。这些自定义工具将成为 Cline 工具包的一部分,准备在未来的任务中使用。

  • “添加一个获取 Jira 工单的工具”:检索工单 AC 并让 Cline 开始工作
  • “添加一个管理 AWS EC2 的工具”:检查服务器指标并上下扩展实例
  • “添加一个获取最新 PagerDuty 事件的工具”:获取详细信息并让 Cline 修复错误

MCP servers are like plugins that extend Cline's powers, letting it:

  • Connect to web services (like GitHub)
  • Control browsers
  • Access databases
  • Automate tasks
  • Handle project management

How can add an MCP server  Cline - Autonomous Coding Agent for VSCode 

  1. Find a server:
  2. Add with Cline:
    • Just say: "Cline, add the MCP server from [GitHub URL]"
    • Cline handles the rest (cloning, building, config)

### 使用Cline在VSCode中部署AI应用程序到云端 对于希望利用云资源来运行和扩展其人工智能(AI)项目的开发者而言,在集成开发环境(IDE),如Visual Studio Code (VSCode)内操作可以极大提高效率。通过命令行界面(CLI, Command Line Interface)工具,即文中提到的Cline[^1],可以在本地环境中更便捷地管理云端服务。 #### 安装必要的CLI工具 为了能够在VSCode里使用特定于某家云计算服务商的CLI功能,先要安装对应的服务商提供的官方CLI客户端。例如AWS CLI用于亚马逊网络服务;Azure CLI针对微软Azure平台;Google Cloud SDK适用于谷歌云平台(GCP)。 ```bash # AWS CLI Installation Example pip install awscli --upgrade --user ``` #### 配置Cloud Provider Credentials 成功安装之后,需配置好访问凭证以便让CLI能够代表用户向目标云提供商发送请求并执行相应动作。这通常涉及到设置API密钥或其他形式的身份验证机制。 ```bash aws configure # For AWS users az login # If you are an Azure customer gcloud init # GCP initialization process ``` #### 创建项目结构与初始化Git仓库 构建一个合理的文件夹架构有助于保持代码整洁有序,并且有利于后续版本控制系统的引入。建议创建一个新的目录作为工作空间的基础部分,接着在此基础上建立.gitignore文件排除不必要的项,最后初始化git库以追踪变更历史记录。 ```bash mkdir my_ai_project && cd $_ echo "node_modules/ .vscode/ *.log" > .gitignore git init . ``` #### 编写Dockerfile定义容器镜像 考虑到不同操作系统之间可能存在兼容性差异以及依赖关系复杂度较高的情况,采用Docker技术打包整个应用连同其所处环境一起上传至远程服务器不失为一种明智的选择。编写一份描述清晰完整的`Dockerfile`文档可以帮助自动化这一过程。 ```dockerfile FROM python:3.8-slim-buster WORKDIR /app COPY requirements.txt . RUN pip install -r requirements.txt COPY . . CMD ["python", "./main.py"] ``` #### 构建&推送Docker Image至Registry 完成上述准备工作后,就可以着手制作实际可用的映像了。这里推荐使用Docker Hub或者其他私有的注册表存储这些二进制数据包,方便日后拉取更新或迁移实例。 ```bash docker build -t your_username/myaiapp:v0.1 . docker tag your_username/myaiapp:v0.1 registry.example.com/yourpath/myaiapp:v0.1 docker push registry.example.com/yourpath/myaiapp:v0.1 ``` #### 利用Terraform/IaC脚本实现基础设施即代码(IaC) 借助Infrastructure as Code (IaC)理念下的工具集——比如HashiCorp Terraform——可进一步简化重复性的资源配置流程。编写`.tf`结尾格式化的声明式模板文件,指定所需虚拟机规格参数、安全组规则设定等内容,从而达到一键式搭建稳定可靠的生产级运行的目的。 ```hcl provider "aws" { region = var.region_name } resource "aws_instance" "web" { ami = data.aws_amiubuntu.id instance_type = "t2.micro" tags = { Name = "MyWebServer" Environment = "dev" } } ``` #### 发布模型和服务端点 当一切准备就绪之,便可通过调用相应的RESTful API接口或是图形化界面上的操作选项正式对外发布训练好的机器学习模型及其配套的服务端口。具体方法取决于所选用的具体云服务平台特性而定。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值