选址问题梳理汇总

设施选址问题在运筹学中至关重要,涉及工厂、仓库、超市等的定位。选址问题包括LP rounding、Primal-Dual和Local Search等近似算法。选址考虑因素包括运输成本、需求条件、法规等,涉及多阶段动态选址和多设施选址策略。文章举例介绍了家乐福的选址策略,强调了选址的复杂性和动态性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近论文涉及到选址问题,于是疯狂看各种文献,特别是网上各种博客、论坛中关于选址问题的解释。在这里结合我的研究一并讨论于此。部分内容属于网上转载。


设施选址问题(Facility Location Problem)自20世纪60年代初期以来,在运筹学中一直占据着中心位置。它来自于工厂、仓库、超市、学校、医院、图书馆、火车站、代理服务器、传感器等位置的确定问题。

  设施选址问题是NP-难解问题,除非P=NP,设施选址问题不存在多项式时间算法。

  P问题:

  一个问题可以在多项式(O(n^k))的时间复杂度内解决。

  NP问题:

  一个问题的解可以在多项式的时间内被验证。

  NP-hard问题:

  任意NP问题都可以在多项式时间内归约为该问题,但该问题本身不一定是NP问题。归约的意思是为了解决问题A,先将问题A归约为另一个问题B,解决问题B同时也间接解决了问题A。

  NPC问题:

  既是NP问题,也是NP-hard问题。

  已知一个 极小化问题,如果算法在多项式时间内能给出可行解,并且所对应的目标值不超过最优值的? (≥ ?)倍,那么称该算法为 ?-近似算法,称?为 近似比

设施选址问题的近似算法主要分三类:

  1. LP rounding 

  线性规划舍入法:首先给出原问题的线性整数规划模型,然后求解相应的线性规划松弛问题得到分数最优解,根据可行要求对分数最优解进行改造,构造原问题的整数可行解,属于非组合算法。

  2. Primal-Dual

  原始对偶法:设计组合算法给出对偶问题的可行解,根据该对偶可行解构造原始问题的整数可行解。

  3. Local Search

  局部搜索法:给定初始可行解,定义适当的邻域,通过引入恰当的调整策略,在邻域中得到改进的可行解,依次迭代,直到调整策略不能改进为止。

1. 选址的意义

  

  

2. 选址问题的程序和步骤

  1. 选址约束条件分析
  2. 搜索整理资料
  3. 地址筛选
  4. 定量分析
  5. 结果评价
  6. 复查和确定选址

  

选址约束条件分析

  (1)需求条件

  顾客现在分布,未来分布预测,货物作业量的增长率及物流区域分析。货物作业量也可以是其他的流量或流动的对象。

  (2)运输条件

  北京市的四道口蔬菜、果品配送中心就建在铁路货运站旁边,并且近靠公路。

  即采取什么样的运输方式,陆运还是空运,等等。

  (3)配送服务的条件

  向顾客报告到会时间、发送频率、根据供货时间计算的从顾客到物流重心的距离和服务范围等。

  (4)用地条件

  (5)法规

收集整理资料

  为正确构造优化模型必须:
  (1)掌握业务量
    ①工厂到物流中心之间的运输量。即从上一级到本级的流量,R3-R2之间。
    ②向顾客配送的货物数量。从本级到下一级的流量,或反之,R2-R1之间。
    ③物流中心保管的货物数量
  (2)掌握费用(衡量指标)
    ①工厂至配送中心之间的运输量
    ②物流中心到顾客之间的配送费
    ③与设施、土地有关的费用及人工费、业务费等
  ① ②两项费用,随着业务量和运送距离的变化而变动,所以必须对每一吨公里的费用进行分析(成本分析); ③项包括可变费用和固定费用&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值