最近论文涉及到选址问题,于是疯狂看各种文献,特别是网上各种博客、论坛中关于选址问题的解释。在这里结合我的研究一并讨论于此。部分内容属于网上转载。
设施选址问题(Facility Location Problem)自20世纪60年代初期以来,在运筹学中一直占据着中心位置。它来自于工厂、仓库、超市、学校、医院、图书馆、火车站、代理服务器、传感器等位置的确定问题。
设施选址问题是NP-难解问题,除非P=NP,设施选址问题不存在多项式时间算法。
P问题:
一个问题可以在多项式(O(n^k))的时间复杂度内解决。
NP问题:
一个问题的解可以在多项式的时间内被验证。
NP-hard问题:
任意NP问题都可以在多项式时间内归约为该问题,但该问题本身不一定是NP问题。归约的意思是为了解决问题A,先将问题A归约为另一个问题B,解决问题B同时也间接解决了问题A。
NPC问题:
既是NP问题,也是NP-hard问题。
已知一个 极小化问题,如果算法在多项式时间内能给出可行解,并且所对应的目标值不超过最优值的? (≥ ?)倍,那么称该算法为 ?-近似算法,称?为 近似比。
设施选址问题的近似算法主要分三类:
1. LP rounding
线性规划舍入法:首先给出原问题的线性整数规划模型,然后求解相应的线性规划松弛问题得到分数最优解,根据可行要求对分数最优解进行改造,构造原问题的整数可行解,属于非组合算法。
2. Primal-Dual
原始对偶法:设计组合算法给出对偶问题的可行解,根据该对偶可行解构造原始问题的整数可行解。
3. Local Search
局部搜索法:给定初始可行解,定义适当的邻域,通过引入恰当的调整策略,在邻域中得到改进的可行解,依次迭代,直到调整策略不能改进为止。
1. 选址的意义
2. 选址问题的程序和步骤
- 选址约束条件分析
- 搜索整理资料
- 地址筛选
- 定量分析
- 结果评价
- 复查和确定选址
选址约束条件分析
(1)需求条件
顾客现在分布,未来分布预测,货物作业量的增长率及物流区域分析。货物作业量也可以是其他的流量或流动的对象。
(2)运输条件
北京市的四道口蔬菜、果品配送中心就建在铁路货运站旁边,并且近靠公路。
即采取什么样的运输方式,陆运还是空运,等等。
(3)配送服务的条件
向顾客报告到会时间、发送频率、根据供货时间计算的从顾客到物流重心的距离和服务范围等。
(4)用地条件
(5)法规
收集整理资料
为正确构造优化模型必须:
(1)掌握业务量
①工厂到物流中心之间的运输量。即从上一级到本级的流量,R3-R2之间。
②向顾客配送的货物数量。从本级到下一级的流量,或反之,R2-R1之间。
③物流中心保管的货物数量
(2)掌握费用(衡量指标)
①工厂至配送中心之间的运输量
②物流中心到顾客之间的配送费
③与设施、土地有关的费用及人工费、业务费等
① ②两项费用,随着业务量和运送距离的变化而变动,所以必须对每一吨公里的费用进行分析(成本分析); ③项包括可变费用和固定费用&#