吴恩达教授机器学习课程笔记【四】- 生成学习算法(2)朴素贝叶斯与拉普拉斯平滑

本节为吴恩达教授机器学习课程第四部分,生成学习算法(2),包括:朴素贝叶斯算法,拉普拉斯平滑,并在结尾附上一个中文文本分类系统的实现代码链接。

2. 朴素贝叶斯

  GDA中特征向量时连续的实值向量,朴素贝叶斯则对应于离散型的特征向量。
  同样是文本分类中垃圾邮件分类器的问题,我们用一个长度等于字典长度的特征向量来表示一封邮件,比如下面的特征向量,包含单词a和单词buy:
在这里插入图片描述
  这个特征向量又称为词向量,之后我们来建立判别模型对 p ( x ∣ y ) p(x|y) p(xy)建模,假设字典有50000个单词,,则 x ∈ { 0 , 1 } 50000 x \in \{0,1\}^{50000} x{0,1}50000,是一个50000维的01矩阵,如果我们用多项式分布对 x x x建模,就会有 2 50000 2^{50000} 250000个可能输出,也就是参数向量的维度维达到 2 50000 − 1 2^{50000}-1 2500001维。
  为了更好地对 p x ∣ y p{x|y} pxy进行建模,做一个很强的条件独立假设,即给定 y y y x x x的各个分量互相独立(朴素贝叶斯假设),得到的算法称为朴素贝叶斯分类器。也就是说假如 y = 1 y=1 y=1表示一封垃圾邮件,那么 x 2087 x_{2087} x2087值的01与否不影响 x 39831 x_{39831} x39831,有:
在这里插入图片描述
  模型的参数由一下三个给出:
在这里插入图片描述
  同样给定一个训练集 { ( x ( i ) , y ( i ) ) ; i = 1 , 2 , . . . , m } \{(x^{(i)},y^{(i)});i=1,2,...,m\} {(x(i),y(i));i=1,2,...,m},我们可以写出数据的联合似然函数:
在这里插入图片描述
  最大化这个似然函数得到参数的极大似然估计:
在这里插入图片描述
  上式中,符号" Λ \Lambda Λ“表示"并”,得到上述参数后,我们可以对新的输入进行预测,计算:
在这里插入图片描述
  然后选择后验概率更高的类别输出即可。
  上面我们假设特征向量是二值的,我们可以将其推广即特征向量可以从 { 1 , 2 , . . . , k i } \{1,2,...,k_i\} {1,2,...,ki}中选取,此时将 p ( x i ∣ y ) p(x_i|y) p(xiy)建模维多项式而非伯努利。我们甚至可以将连续行特征向量进行离散化,比如:
在这里插入图片描述
  也就是说,当原始的连续性变量用多元正态分布建模效果不好时,我们可以将特征离散化然后使用朴素贝叶斯而非GDA,可能会得到更好的分类效果。

2.1 拉普拉斯平滑

  上面介绍的朴素贝叶斯算法对于许多问题效果显著,但是一个简单的变化可以让他变的更好,同样假设我们在做垃圾邮件分类,当一个从未出现在训练集的单词(在字典中,假设时第35000个),此时我们的朴素贝叶斯分类器会得到参数的极大似然估计:
在这里插入图片描述
  因为已有的数据集中并没有出现过该单词,那么分类器就会认为在两种邮件中存在该单词的概率为0,这样计算类别后验概率时就会得到
在这里插入图片描述
  这样显然无法计算,统计学上将从未出现过的事件出现的概率视为0是不合理的。以特征向量从 { 1 , . . . , k } \{1,...,k\} {1,...,k}取值为例,我们可以对参数:
在这里插入图片描述
  进行极大似然估计得到:
在这里插入图片描述
  这里得到的值也可能为0,为了避免这个问题,我们引入拉普拉斯平滑,使用下面的式子:
在这里插入图片描述
  回到之前的垃圾分类,我们可以得到参数的如下估计:
在这里插入图片描述


附上一个小型的中文文本分类系统的实现与代码,这里调用sklearn的多项式贝叶斯,核心代码也就一句而已,但是涉及中文文本分类的大概流程,涉及到的内容比如中文分词,文本信息对象化,词向量空间,权重策略TF-IDF方法等等。实际上核心代码也就下面这一部分而已,这里的例子是英文单词:

class Words2Vec(object):

    def fit(self, X):
        vob = sorted(set(w for ws in X for w in ws))
        self.vec_length = len(vob)
        self.vob_dict = dict(zip(vob, range(self.vec_length)))

    def words2vec(self, n_words):
        """文本词列表转换为词向量"""
        if not hasattr(self, 'vob_dict'):
            raise ValueError('Instance must be fitted.')
        n_samples = len(n_words)
        vectors = np.zeros((n_samples, self.vec_length), dtype=int)
        for i, words in enumerate(n_words):
            vec = vectors[i]
            for w in words:
                index = self.vob_dict.get(w, None)
                if index is not None:
                    vec[index] += 1
        return vectors

X = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
y = ['0', '1', '0', '1', '0', '1']

wv = Words2Vec()
wv.fit(X)
X = wv.words2vec(X)

clf = MultinomialNB()
clf.fit(X, y)
print(clf.predict(X))

X = wv.words2vec([['dog', 'dog', 'ate']])
print(clf.predict(X))


欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值