本节为吴恩达教授机器学习课程第四部分,生成学习算法(2),包括:朴素贝叶斯算法,拉普拉斯平滑,并在结尾附上一个中文文本分类系统的实现代码链接。
2. 朴素贝叶斯
GDA中特征向量时连续的实值向量,朴素贝叶斯则对应于离散型的特征向量。
同样是文本分类中垃圾邮件分类器的问题,我们用一个长度等于字典长度的特征向量来表示一封邮件,比如下面的特征向量,包含单词a和单词buy:
这个特征向量又称为词向量,之后我们来建立判别模型对
p
(
x
∣
y
)
p(x|y)
p(x∣y)建模,假设字典有50000个单词,,则
x
∈
{
0
,
1
}
50000
x \in \{0,1\}^{50000}
x∈{0,1}50000,是一个50000维的01矩阵,如果我们用多项式分布对
x
x
x建模,就会有
2
50000
2^{50000}
250000个可能输出,也就是参数向量的维度维达到
2
50000
−
1
2^{50000}-1
250000−1维。
为了更好地对
p
x
∣
y
p{x|y}
px∣y进行建模,做一个很强的条件独立假设,即给定
y
y
y时
x
x
x的各个分量互相独立(朴素贝叶斯假设),得到的算法称为朴素贝叶斯分类器。也就是说假如
y
=
1
y=1
y=1表示一封垃圾邮件,那么
x
2087
x_{2087}
x2087值的01与否不影响
x
39831
x_{39831}
x39831,有:
模型的参数由一下三个给出:
同样给定一个训练集
{
(
x
(
i
)
,
y
(
i
)
)
;
i
=
1
,
2
,
.
.
.
,
m
}
\{(x^{(i)},y^{(i)});i=1,2,...,m\}
{(x(i),y(i));i=1,2,...,m},我们可以写出数据的联合似然函数:
最大化这个似然函数得到参数的极大似然估计:
上式中,符号"
Λ
\Lambda
Λ“表示"并”,得到上述参数后,我们可以对新的输入进行预测,计算:
然后选择后验概率更高的类别输出即可。
上面我们假设特征向量是二值的,我们可以将其推广即特征向量可以从
{
1
,
2
,
.
.
.
,
k
i
}
\{1,2,...,k_i\}
{1,2,...,ki}中选取,此时将
p
(
x
i
∣
y
)
p(x_i|y)
p(xi∣y)建模维多项式而非伯努利。我们甚至可以将连续行特征向量进行离散化,比如:
也就是说,当原始的连续性变量用多元正态分布建模效果不好时,我们可以将特征离散化然后使用朴素贝叶斯而非GDA,可能会得到更好的分类效果。
2.1 拉普拉斯平滑
上面介绍的朴素贝叶斯算法对于许多问题效果显著,但是一个简单的变化可以让他变的更好,同样假设我们在做垃圾邮件分类,当一个从未出现在训练集的单词(在字典中,假设时第35000个),此时我们的朴素贝叶斯分类器会得到参数的极大似然估计:
因为已有的数据集中并没有出现过该单词,那么分类器就会认为在两种邮件中存在该单词的概率为0,这样计算类别后验概率时就会得到
这样显然无法计算,统计学上将从未出现过的事件出现的概率视为0是不合理的。以特征向量从
{
1
,
.
.
.
,
k
}
\{1,...,k\}
{1,...,k}取值为例,我们可以对参数:
进行极大似然估计得到:
这里得到的值也可能为0,为了避免这个问题,我们引入拉普拉斯平滑,使用下面的式子:
回到之前的垃圾分类,我们可以得到参数的如下估计:
附上一个小型的中文文本分类系统的实现与代码,这里调用sklearn的多项式贝叶斯,核心代码也就一句而已,但是涉及中文文本分类的大概流程,涉及到的内容比如中文分词,文本信息对象化,词向量空间,权重策略TF-IDF方法等等。实际上核心代码也就下面这一部分而已,这里的例子是英文单词:
class Words2Vec(object):
def fit(self, X):
vob = sorted(set(w for ws in X for w in ws))
self.vec_length = len(vob)
self.vob_dict = dict(zip(vob, range(self.vec_length)))
def words2vec(self, n_words):
"""文本词列表转换为词向量"""
if not hasattr(self, 'vob_dict'):
raise ValueError('Instance must be fitted.')
n_samples = len(n_words)
vectors = np.zeros((n_samples, self.vec_length), dtype=int)
for i, words in enumerate(n_words):
vec = vectors[i]
for w in words:
index = self.vob_dict.get(w, None)
if index is not None:
vec[index] += 1
return vectors
X = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
y = ['0', '1', '0', '1', '0', '1']
wv = Words2Vec()
wv.fit(X)
X = wv.words2vec(X)
clf = MultinomialNB()
clf.fit(X, y)
print(clf.predict(X))
X = wv.words2vec([['dog', 'dog', 'ate']])
print(clf.predict(X))
欢迎扫描二维码关注微信公众号 深度学习与数学 [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]