Tensorflow中 tf.reduce_sum()方法的用法

本文介绍了TensorFlow中tf.reduce_sum()方法的用法,该方法用于计算张量沿特定维度的和。参数包括input_tensor(输入张量)、axis(指定求和的维度)、keepdims(是否保持维度)等。通过实例展示了不同设置下求和的结果,并提到了其他类似的方法如tf.reduce_mean、tf.reduce_max、tf.reduce_all和tf.reduce_any。
摘要由CSDN通过智能技术生成

tf.reduce_sum()方法用于计算张量tensor沿着某一维度的和,可以在求和后降维。

tf.math.reduce_sum(
    input_tensor,
    axis=None,
    keepdims=None,
    name=None,
    reduction_indices=None,
    keep_dims=None)

第一个参数 input_tensor: 输入待求和的tensor;
第二个参数 axis: 指定的维,如果不指定,则计算所有元素的总和;
第三个参数 keepdims:是否保持原有张量的维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
第四个参数 name: 操作的名称;
第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;
第六个参数 keep_dims:在以前版本中用来设置是否保持原张量的维度,已弃用;

以一个维度是2,形状是[2,3]的tensor举例,如果设置为不保持原来张量的维度,keepdims=False(keepdims的取值,如果不传入这个参数,则系统默认为False),结果:

import tensorflow as tf
 
x = [[1,2,3],
     [1,2,3]]
 
xx = tf.cast(x,tf.float32)
 
sum_all = tf.red
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值