OpenCV.自适应阈值.Adaptive

本文介绍了在OpenCV中如何使用自适应阈值方法,如C均值和高斯C均值,通过adaptiveThreshold()函数进行图像二值化处理。通过Java代码实例展示了如何调用这些函数并应用于实际图像文件,适合图像处理初学者和开发者参考。
摘要由CSDN通过智能技术生成

自适应阈值.Adaptive

对于自适应阈值除了OTSU与TRIANGLE外,还有使用图像自适应阈值的方法,该方法具体有C均值与高斯C均值两种。其在OpenCV中实现依赖于adaptiveThreshold() 函数,下面是其声明:

adaptiveThreshold(gray, dst, maxValue, adaptiveMethod, thresholdType, blockSize, C);

各参数解释如下:

  • src
    表示此操作的源(输入图像)的Mat对象。

  • dst
    表示此操作的目标(输出图像)的Mat对象。

  • maxValue
    最大灰度值,通常为255。

  • adaptiveMethod
    自适应方法,通常为C均值或高斯C均值。

  • thresholdType
    阈值方法,通常为THRESH_BINARY

  • blockSize
    分块大小,奇数。

  • C
    常数,阈值化的时候使用计算得到的+C之后作分割。

Java代码(JavaFX Controller层)

public class Controller{

    @FXML private Text fxText;
    @FXML private ImageView imageView;
    @FXML private Label resultLabel;

    @FXML public void handleButtonEvent(ActionEvent actionEvent) throws IOException {

        Node source = (Node) actionEvent.getSource();
        Window theStage = source.getScene().getWindow();
        FileChooser fileChooser = new FileChooser();
        FileChooser.ExtensionFilter extFilter = new FileChooser.ExtensionFilter("PNG files (*.png)", "*.png");
        fileChooser.getExtensionFilters().add(extFilter);
        fileChooser.getExtensionFilters().add(new FileChooser.ExtensionFilter("JPG Files(*.jpg)", "*.jpg"));
        File file = fileChooser.showOpenDialog(theStage);

        runInSubThread(file.getPath());

    }

    private void runInSubThread(String filePath){
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    WritableImage writableImage = thresholdOfAdaptive(filePath);

                    Platform.runLater(new Runnable() {
                        @Override
                        public void run() {
                            imageView.setImage(writableImage);
                        }
                    });

                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
    
    private WritableImage thresholdOfAdaptive(String filePath) throws IOException {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

        Mat src = Imgcodecs.imread(filePath);
        Mat dst = new Mat();

        // Construct an empty mat instance to change src into gray image.
        Mat gray = new Mat();
        Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
        Imgproc.adaptiveThreshold(gray, dst, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, 15, 10);

        MatOfByte matOfByte = new MatOfByte();
        Imgcodecs.imencode(".jpg", dst, matOfByte);

        byte[] bytes = matOfByte.toArray();
        InputStream in = new ByteArrayInputStream(bytes);
        BufferedImage bufImage = ImageIO.read(in);

        WritableImage writableImage = SwingFXUtils.toFXImage(bufImage, null);

        return writableImage;
    }

}

运行图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值