import random
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
def forward(x, w):
y_p = w * x
return y_p
def loss(x, y, w):
y_p = forward(x, w)
loss_ = (y - y_p) * (y - y_p)
return loss_
w_list = []
mse_list = []
epoch=100
lr=0.01
w=random.randint(0,10)
epoch_list=range(epoch)
for i in range(epoch):
l_sum = 0
grad=0
w_list.append(w)
for x, y in zip(x_data, y_data):
loss_ = loss(x, y, w)
l_sum += loss_
grad+=2*x*(x*w-y)
cost=l_sum / len(x_data)
grad=grad/len(x_data)
w=w-lr*grad
mse_list.append(cost)
plt.plot(epoch_list, mse_list)
plt.show()
PyTorch深度学习实践第三集 梯度下降 y=wx
最新推荐文章于 2024-11-12 23:15:59 发布