有时对于数据量较大的地理数据,我们希望通过一定的统计方法将空间模式量化,从而获知这些地理数据在空间上是聚合的、还是离散的、还是随机的等。
在了解如上工具之前,有一些空间统计学的基本知识还是要先搞明白,磨刀不误砍柴工,那就开始吧。
零假设、P值、Z得分、置信度
分析模式工具集中的工具都采用“推论统计学”,先确定一个零假设,也就是假设要素或与要素相关的值都表现为空间随机模式—— Complete Spatial Randomness (CSR);然后再计算一个 p值,用来表示零假设的正确概率。分析模式工具集中的工具都会返回 P值(P-Value)和 Z得分(Z-Score),这是我们拒绝前面的零假设的依据,也就是我们观测的要素表现出显著性聚类或离散模式,而不是随机模式。
什么是 P 值? 什么是 Z 得分?
P值 就是概率值,它表示观测到的空间模式是由某随机过程创建而成的概率,或者我们简单的理解成是观测到的空间模式是随机空间模式的概率。P 值越小,也就是观测到的空间模式是随机空间模式的可能性越小,也就是我们越可以拒绝开始的零假设。
Z得分 表示标准差的倍数。例如,如果工具返回的 z 得分为 +2.5,我们就会